Dynamical Pictures
In quantum mechanics, dynamical pictures (or ''representations'') are the multiple equivalent ways to mathematically formulate the dynamics of a quantum system. The two most important ones are the Heisenberg picture and the Schrödinger picture. These differ only by a basis change with respect to time-dependency, analogous to the Lagrangian and Eulerian specification of the flow field: in short, time dependence is attached to quantum states in the Schrödinger picture and to operators in the Heisenberg picture. There is also an intermediate formulation known as the interaction picture (or Dirac picture) which is useful for doing computations when a complicated Hamiltonian has a natural decomposition into a simple "free" Hamiltonian and a perturbation. Equations that apply in one picture do not necessarily hold in the others, because time-dependent unitary transformations relate operators in one picture to the analogous operators in the others. Not all textbooks and articles m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dynamic Pictures
{{Citation style, date=October 2019 Dynamic Pictures Inc. was a San Jose-based company which produced the Oxygen line of high-end 3D graphics cards. In 1997, they produced three PCI-based models: the Oxygen 102, Oxygen 202, and Oxygen 402. The Oxygen 202 and 402 featured an SLI-like design in providing two and four identical graphics processing units A graphics processing unit (GPU) is a specialized electronic circuit designed for digital image processing and to accelerate computer graphics, being present either as a discrete video card or embedded on motherboards, mobile phones, personal co ... to achieve higher performance. The graphics processing unit was designed by 3D Labs. The four processor Oxygen 402 received a Viewperf CDRS-03 score of 42. In comparison, a much more recent GeForce FX GL (using a Geforce 5800-class GPU) achieves a 1803 on the same test. The list price for the Oxygen 102 was $1495 1996, later reduced to $399. References *"Dynamic Pictures", Computerw ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Norm (mathematics)
In mathematics, a norm is a function (mathematics), function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the Origin (mathematics), origin: it Equivariant map, commutes with scaling, obeys a form of the triangle inequality, and zero is only at the origin. In particular, the Euclidean distance in a Euclidean space is defined by a norm on the associated Euclidean vector space, called the #Euclidean norm, Euclidean norm, the #p-norm, 2-norm, or, sometimes, the magnitude or length of the vector. This norm can be defined as the square root of the inner product of a vector with itself. A seminorm satisfies the first two properties of a norm but may be zero for vectors other than the origin. A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a ''seminormed vector space''. The term pseudonorm has been used for several related meaning ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Correspondence Principle
In physics, a correspondence principle is any one of several premises or assertions about the relationship between classical and quantum mechanics. The physicist Niels Bohr coined the term in 1920 during the early development of quantum theory; he used it to explain how quantized classical orbitals connect to quantum radiation. Modern sources often use the term for the idea that the behavior of systems described by quantum theory reproduces classical physics in the limit of large quantum numbers: for large orbits and for large energies, quantum calculations must agree with classical calculations. A "generalized" correspondence principle refers to the requirement for a broad set of connections between any old and new theory. History Max Planck was the first to introduce the idea of quanta of energy, while studying black-body radiation in 1900. In 1906, he was also the first to write that quantum theory should replicate classical mechanics at some limit, particularly if the Pl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ehrenfest Theorem
The Ehrenfest theorem, named after Austrian theoretical physicist Paul Ehrenfest, relates the time derivative of the expectation values of the position and momentum operators ''x'' and ''p'' to the expectation value of the force F=-V'(x) on a massive particle moving in a scalar potential V(x), The Ehrenfest theorem is a special case of a more general relation between the expectation of any quantum mechanical operator and the expectation of the commutator of that operator with the Hamiltonian of the system where is some quantum mechanical operator and is its expectation value. It is most apparent in the Heisenberg picture of quantum mechanics, where it amounts to just the expectation value of the Heisenberg equation of motion. It provides mathematical support to the correspondence principle. The reason is that Ehrenfest's theorem is closely related to Liouville's theorem of Hamiltonian mechanics, which involves the Poisson bracket instead of a commutator. Dirac's r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commutator
In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, and , of a group , is the element : . This element is equal to the group's identity if and only if and commute (that is, if and only if ). The set of all commutators of a group is not in general closed under the group operation, but the subgroup of ''G'' generated by all commutators is closed and is called the ''derived group'' or the '' commutator subgroup'' of ''G''. Commutators are used to define nilpotent and solvable groups and the largest abelian quotient group. The definition of the commutator above is used throughout this article, but many group theorists define the commutator as : . Using the first definition, this can be expressed as . Identities (group theory) Commutator identities are an important tool in group th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Observables
In physics, an observable is a physical property or physical quantity that can be measured. In classical mechanics, an observable is a real-valued "function" on the set of all possible system states, e.g., position and momentum. In quantum mechanics, an observable is an operator, or gauge, where the property of the quantum state can be determined by some sequence of operations. For example, these operations might involve submitting the system to various electromagnetic fields and eventually reading a value. Physically meaningful observables must also satisfy transformation laws that relate observations performed by different observers in different frames of reference. These transformation laws are automorphisms of the state space, that is bijective transformations that preserve certain mathematical properties of the space in question. Quantum mechanics In quantum mechanics, observables manifest as self-adjoint operators on a separable complex Hilbert space representing ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Heligoland
Heligoland (; , ; Heligolandic Frisian: , , Mooring Frisian: , ) is a small archipelago in the North Sea. The islands were historically possessions of Denmark, then became possessions of the United Kingdom from 1807 to 1890. Since 1890, they have been part of the German state of Schleswig-Holstein, although they were managed by the United Kingdom as a war prize from 1945 to 1952. The islands are located in the Heligoland Bight (part of the German Bight) in the southeastern corner of the North Sea and had a population of 1,127 at the end of 2016. They are the only German islands not in the vicinity of the mainland. They lie approximately by sea from Cuxhaven at the mouth of the River Elbe. In addition to German, the local population, who are ethnic Frisians, speak the Heligolandic dialect of the North Frisian language called . During a visit to the islands in 1841, August Heinrich Hoffmann von Fallersleben wrote the lyrics to the "", which became the national anthem o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Werner Heisenberg
Werner Karl Heisenberg (; ; 5 December 1901 – 1 February 1976) was a German theoretical physicist, one of the main pioneers of the theory of quantum mechanics and a principal scientist in the German nuclear program during World War II. He published his Umdeutung paper, ''Umdeutung'' paper in 1925, a major reinterpretation of old quantum theory. In the subsequent series of papers with Max Born and Pascual Jordan, during the same year, his matrix mechanics, matrix formulation of quantum mechanics was substantially elaborated. He is known for the uncertainty principle, which he published in 1927. Heisenberg was awarded the 1932 Nobel Prize in Physics "for the creation of quantum mechanics". Heisenberg also made contributions to the theories of the Fluid dynamics, hydrodynamics of turbulent flows, the atomic nucleus, ferromagnetism, cosmic rays, and subatomic particles. He introduced the concept of a wave function collapse. He was also instrumental in planning the first West Germa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Freeman Dyson
Freeman John Dyson (15 December 1923 – 28 February 2020) was a British-American theoretical physics, theoretical physicist and mathematician known for his works in quantum field theory, astrophysics, random matrix, random matrices, mathematical formulation of quantum mechanics, condensed matter physics, nuclear physics, and nuclear engineering, engineering. He was professor emeritus in the Institute for Advanced Study in Princeton, New Jersey, Princeton and a member of the board of sponsors of the ''Bulletin of the Atomic Scientists''. Dyson originated several concepts that bear his name, such as Dyson's transform, a fundamental technique in additive number theory, which he developed as part of his proof of Mann's theorem; the Dyson tree, a hypothetical genetic engineering, genetically engineered plant capable of growing in a comet; the Dyson series, a Perturbation theory (quantum mechanics), perturbative series where each term is represented by Feynman diagrams; the Dys ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dyson Series
In scattering theory, a part of mathematical physics, the Dyson series, formulated by Freeman Dyson, is a perturbative expansion of the time evolution operator in the interaction picture. Each term can be represented by a sum of Feynman diagrams. This series diverges asymptotically, but in quantum electrodynamics (QED) at the second order the difference from experimental data is in the order of 10−10. This close agreement holds because the coupling constant (also known as the fine-structure constant) of QED is much less than 1. Dyson operator In the interaction picture, a Hamiltonian , can be split into a ''free'' part and an ''interacting part'' as . The potential in the interacting picture is :V_(t) = \mathrm^ V_(t) \mathrm^, where H_0 is time-independent and V_(t) is the possibly time-dependent interacting part of the Schrödinger picture. To avoid subscripts, V(t) stands for V_\mathrm(t) in what follows. In the interaction picture, the evolution oper ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Time-ordering
In theoretical physics, path-ordering is the procedure (or a meta-operator \mathcal P) that orders a product of operators according to the value of a chosen parameter: :\mathcal P \left\ \equiv O_(\sigma_) O_(\sigma_) \cdots O_(\sigma_). Here ''p'' is a permutation that orders the parameters by value: :p : \ \to \ :\sigma_ \leq \sigma_ \leq \cdots \leq \sigma_. For example: :\mathcal P \left\ = O_4(1) O_2(2) O_3(3) O_1(4) . In many fields of physics, the most common type of path-ordering is time-ordering, which is discussed in detail below. Examples If an operator is not simply expressed as a product, but as a function of another operator, we must first perform a Taylor expansion of this function. This is the case of the Wilson loop, which is defined as a path-ordered exponential to guarantee that the Wilson loop encodes the holonomy of the gauge connection. The parameter ''σ'' that determines the ordering is a parameter describing the contour, and because the co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eigenstate
In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a prediction for the system represented by the state. Knowledge of the quantum state, and the rules for the system's evolution in time, exhausts all that can be known about a quantum system. Quantum states may be defined differently for different kinds of systems or problems. Two broad categories are * wave functions describing quantum systems using position or momentum variables and * the more abstract vector quantum states. Historical, educational, and application-focused problems typically feature wave functions; modern professional physics uses the abstract vector states. In both categories, quantum states divide into pure versus mixed states, or into coherent states and incoherent states. Categories with special properties include stationary states for time ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |