HOME





Dynamic Modulus
Dynamic modulus (sometimes complex modulusThe Open University (UK), 2000. ''T838 Design and Manufacture with Polymers: Solid properties and design'', page 30. Milton Keynes: The Open University.) is the ratio of stress to strain under ''vibratory conditions'' (calculated from data obtained from either free or forced vibration tests, in shear, compression, or elongation). It is a property of viscoelastic materials. Viscoelastic stress–strain phase-lag Viscoelasticity is studied using dynamic mechanical analysis where an oscillatory force (stress) is applied to a material and the resulting displacement (strain) is measured. *In purely elastic materials the stress and strain occur in phase, so that the response of one occurs simultaneously with the other. *In purely viscous materials, there is a phase difference between stress and strain, where strain lags stress by a 90 degree (\pi/2 radian) phase lag. *Viscoelastic materials exhibit behavior somewhere in between that of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Viscoelastic
In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both Viscosity, viscous and Elasticity (physics), elastic characteristics when undergoing deformation (engineering), deformation. Viscous materials, like water, resist both shear flow and Strain (materials science), strain linearly with time when a Stress (physics), stress is applied. Elastic materials strain when stretched and immediately return to their original state once the stress is removed. Viscoelastic materials have elements of both of these properties and, as such, exhibit time-dependent strain. Whereas elasticity is usually the result of chemical bond, bond stretching along crystallographic planes in an ordered solid, viscosity is the result of the diffusion of atoms or molecules inside an amorphous material.Meyers and Chawla (1999): "Mechanical Behavior of Materials", 98-103. Background In the nineteenth century, physicists such as James Clerk Maxwell, Ludwig Boltzm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Imaginary Unit
The imaginary unit or unit imaginary number () is a mathematical constant that is a solution to the quadratic equation Although there is no real number with this property, can be used to extend the real numbers to what are called complex numbers, using addition and multiplication. A simple example of the use of in a complex number is Imaginary numbers are an important mathematical concept; they extend the real number system \mathbb to the complex number system \mathbb, in which at least one Root of a function, root for every nonconstant polynomial exists (see Algebraic closure and Fundamental theorem of algebra). Here, the term ''imaginary'' is used because there is no real number having a negative square (algebra), square. There are two complex square roots of and , just as there are two complex square roots of every real number other than zero (which has one multiple root, double square root). In contexts in which use of the letter is ambiguous or problematic, the le ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Solid Mechanics
Solid mechanics (also known as mechanics of solids) is the branch of continuum mechanics that studies the behavior of solid materials, especially their motion and deformation (mechanics), deformation under the action of forces, temperature changes, phase (chemistry), phase changes, and other external or internal agents. Solid mechanics is fundamental for civil engineering, civil, Aerospace engineering, aerospace, nuclear engineering, nuclear, Biomedical engineering, biomedical and mechanical engineering, for geology, and for many branches of physics and chemistry such as materials science. It has specific applications in many other areas, such as understanding the anatomy of living beings, and the design of dental prosthesis, dental prostheses and surgical implants. One of the most common practical applications of solid mechanics is the Euler–Bernoulli beam theory, Euler–Bernoulli beam equation. Solid mechanics extensively uses tensors to describe stresses, strains, and the r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physical Quantities
A physical quantity (or simply quantity) is a property of a material or system that can be quantified by measurement. A physical quantity can be expressed as a ''value'', which is the algebraic multiplication of a '' numerical value'' and a ''unit of measurement''. For example, the physical quantity mass, symbol ''m'', can be quantified as ''m'n''kg, where ''n'' is the numerical value and kg is the unit symbol (for kilogram). Quantities that are vectors have, besides numerical value and unit, direction or orientation in space. Components Following ISO 80000-1, any value or magnitude of a physical quantity is expressed as a comparison to a unit of that quantity. The ''value'' of a physical quantity ''Z'' is expressed as the product of a ''numerical value'' (a pure number) and a unit 'Z'' :Z = \ \times /math> For example, let Z be "2 metres"; then, \ = 2 is the numerical value and = \mathrm is the unit. Conversely, the numerical value expressed in an arbitrary unit can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Palierne Equation
Palierne equation connects the dynamic modulus of emulsions with the dynamic modulus of the two phases, size of the droplets and the interphase surface tension. The equation can also be used for suspensions of viscoelastic solid particles in viscoelastic fluids. The equation is named after French rheologist Jean-François Palierne, who proposed the equation in 1991. For the dilute emulsions Palierne equation looks like: :G^*=G^*_m(1+5\phi H^*) where G^* is the dynamic modulus of the emulsion, G^*_m is the dynamic modulus of the continuous phase (matrix), \phi is the volume fraction of the disperse phase and the H^* is given as :H^*=\frac where G^*_d is the dynamic modulus of the disperse phase, \sigma is the surface tension between the phases and R is the radius In classical geometry, a radius (: radii or radiuses) of a circle or sphere is any of the line segments from its Centre (geometry), center to its perimeter, and in more modern usage, it is also their length. The radi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elastic Modulus
An elastic modulus (also known as modulus of elasticity (MOE)) is a quantity that describes an object's or substance's resistance to being deformed elastically (i.e., non-permanently) when a stress is applied to it. Definition The elastic modulus of an object is defined as the slope of its stress–strain curve in the elastic deformation region: A stiffer material will have a higher elastic modulus. An elastic modulus has the form: :\delta \ \stackrel\ \frac where stress is the force causing the deformation divided by the area to which the force is applied and strain is the ratio of the change in some parameter caused by the deformation to the original value of the parameter. Since strain is a dimensionless quantity, the units of \delta will be the same as the units of stress. Elastic constants and moduli Elastic constants are specific parameters that quantify the stiffness of a material in response to applied stresses and are fundamental in defining the elastic pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dynamic Mechanical Analysis
Dynamic mechanical analysis (abbreviated DMA) is a technique used to study and characterize materials. It is most useful for studying the viscoelastic behavior of polymers. A sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature of the material, as well as to identify transitions corresponding to other molecular motions. Theory Viscoelastic properties of materials Polymers composed of long molecular chains have unique viscoelastic properties, which combine the characteristics of elastic solids and Newtonian fluids. The classical theory of elasticity describes the mechanical properties of elastic solids where stress is proportional to strain in small deformations. Such response to stress is independent of strain rate. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Loss Tangent
In electrical engineering, dielectric loss quantifies a dielectric material's inherent dissipation of electromagnetic energy (e.g. heat). It can be parameterized in terms of either the loss angle or the corresponding loss tangent . Both refer to the phasor in the complex plane whose real and imaginary parts are the resistive (lossy) component of an electromagnetic field and its reactive (lossless) counterpart. Electromagnetic field perspective For time-varying electromagnetic fields, the electromagnetic energy is typically viewed as waves propagating either through free space, in a transmission line, in a microstrip line, or through a waveguide. Dielectrics are often used in all of these environments to mechanically support electrical conductors and keep them at a fixed separation, or to provide a barrier between different gas pressures yet still transmit electromagnetic power. Maxwell’s equations are solved for the electric and magnetic field components of the pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Transform
In mathematics, the Fourier transform (FT) is an integral transform that takes a function as input then outputs another function that describes the extent to which various frequencies are present in the original function. The output of the transform is a complex-valued function of frequency. The term ''Fourier transform'' refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made, the output of the operation is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into the intensities of its constituent pitches. Functions that are localized in the time domain have Fourier transforms that are spread out across the frequency domain and vice versa, a phenomenon known as the uncertainty principle. The critical case for this principle is the Gaussian function, of substantial importance in probability theory and statist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Viscoelasticity
In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist both shear flow and strain linearly with time when a stress is applied. Elastic materials strain when stretched and immediately return to their original state once the stress is removed. Viscoelastic materials have elements of both of these properties and, as such, exhibit time-dependent strain. Whereas elasticity is usually the result of bond stretching along crystallographic planes in an ordered solid, viscosity is the result of the diffusion of atoms or molecules inside an amorphous material.Meyers and Chawla (1999): "Mechanical Behavior of Materials", 98-103. Background In the nineteenth century, physicists such as James Clerk Maxwell, Ludwig Boltzmann, and Lord Kelvin researched and experimented with creep and recovery of glasses, metals, and rubbers. Viscoel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hooke's Law
In physics, Hooke's law is an empirical law which states that the force () needed to extend or compress a spring by some distance () scales linearly with respect to that distance—that is, where is a constant factor characteristic of the spring (i.e., its stiffness), and is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram. He published the solution of his anagram in 1678 as: ("as the extension, so the force" or "the extension is proportional to the force"). Hooke states in the 1678 work that he was aware of the law since 1660. Hooke's equation holds (to some extent) in many other situations where an elastic body is deformed, such as wind blowing on a tall building, and a musician plucking a string of a guitar. An elastic body or material for which this equation can be assumed is said to be linear-elastic or Hookean. Hooke's law is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Radian
The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. It is defined such that one radian is the angle subtended at the centre of a circle by an Circular arc, arc that is equal in length to the radius. The unit was formerly an SI supplementary unit and is currently a dimensionless unit, dimensionless SI derived unit,: "The CGPM decided to interpret the supplementary units in the SI, namely the radian and the steradian, as dimensionless derived units." defined in the SI as 1 rad = 1 and expressed in terms of the SI base unit metre (m) as . Angles without explicitly specified units are generally assumed to be measured in radians, especially in mathematical writing. Definition One radian is defined as the angle at the center of a circle in a plane that wikt:subtend, subtends an arc whose length equals the radius of the circle. More generally, the magnit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]