HOME





Dwork Family
In algebraic geometry, a Dwork family is a one-parameter family of hypersurfaces depending on an integer ''n'', studied by Bernard Dwork. Originally considered by Dwork in the context of local zeta-functions, such families have been shown to have relationships with mirror symmetry and extensions of the modularity theorem. Definition The Dwork family is given by the equations : x_1^n + x_2^n +\cdots +x_n^n = -n\lambda x_1x_2\cdots x_n \, , for all n\ge 1. History The Dwork family was originally used by B. Dwork to develop the deformation theory of zeta functions of nonsingular hypersurfaces in projective space In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally .... References * Algebraic geometry {{algebraic-geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects. The fundamental objects of study in algebraic geometry are algebraic variety, algebraic varieties, which are geometric manifestations of solution set, solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are line (geometry), lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscate of Bernoulli, lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular point of a curve, singular p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hypersurface
In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Euclidean space, an affine space or a projective space. Hypersurfaces share, with surfaces in a three-dimensional space, the property of being defined by a single implicit equation, at least locally (near every point), and sometimes globally. A hypersurface in a (Euclidean, affine, or projective) space of dimension two is a plane curve. In a space of dimension three, it is a surface. For example, the equation :x_1^2+x_2^2+\cdots+x_n^2-1=0 defines an algebraic hypersurface of dimension in the Euclidean space of dimension . This hypersurface is also a smooth manifold, and is called a hypersphere or an -sphere. Smooth hypersurface A hypersurface that is a smooth manifold is called a ''smooth hypersurface''. In , a smooth hypersurface is ori ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bernard Dwork
Bernard Morris Dwork (May 27, 1923 – May 9, 1998) was an American mathematician, known for his application of ''p''-adic analysis to local zeta functions, and in particular for a proof of the first part of the Weil conjectures: the rationality of the zeta function of a variety over a finite field. The general theme of Dwork's research was ''p''-adic cohomology and ''p''-adic differential equations. He published two papers under the pseudonym Maurizio Boyarsky. Career Dwork studied electrical engineering at the City College of New York and Brooklyn Polytechnic Institute. He served in the Pacific theater of World War II. He received his Ph.D. at Columbia University in 1954 under direction of Emil Artin (his formal advisor was John Tate); Nick Katz was one of his students.. He spent 3 years at Harvard University and 7 years at Johns Hopkins University before joining Princeton University as a faculty member in 1964. He became Eugene Higgins Professor of Mathematics in 1978 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Zeta-function
In mathematics, the local zeta function (sometimes called the congruent zeta function or the Hasse–Weil zeta function) is defined as :Z(V, s) = \exp\left(\sum_^\infty \frac (q^)^k\right) where is a non-singular -dimensional projective algebraic variety over the field with elements and is the number of points of defined over the finite field extension of . Making the variable transformation gives : \mathit (V,t) = \exp \left( \sum_^ N_k \frac \right) as the formal power series in the variable t. Equivalently, the local zeta function is sometimes defined as follows: : (1)\ \ \mathit (V,0) = 1 \, : (2)\ \ \frac \log \mathit (V,t) = \sum_^ N_k t^\ . In other words, the local zeta function with coefficients in the finite field is defined as a function whose logarithmic derivative generates the number of solutions of the equation defining in the degree extension Formulation Given a finite field ''F'', there is, up to isomorphism, only one field ''Fk'' with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mirror Symmetry (string Theory)
In algebraic geometry and theoretical physics, mirror symmetry is a relationship between geometry, geometric objects called Calabi–Yau manifolds. The term refers to a situation where two Calabi–Yau manifolds look very different geometrically but are nevertheless equivalent when employed as extra dimensions of string theory. Early cases of mirror symmetry were discovered by physicists. Mathematicians became interested in this relationship around 1990 when Philip Candelas, Xenia de la Ossa, Paul Green, and Linda Parkes showed that it could be used as a tool in enumerative geometry, a branch of mathematics concerned with counting the number of solutions to geometric questions. Candelas and his collaborators showed that mirror symmetry could be used to count rational curves on a Calabi–Yau manifold, thus solving a longstanding problem. Although the original approach to mirror symmetry was based on physical ideas that were not understood in a mathematically precise way, some of i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Modularity Theorem
In number theory, the modularity theorem states that elliptic curves over the field of rational numbers are related to modular forms in a particular way. Andrew Wiles and Richard Taylor proved the modularity theorem for semistable elliptic curves, which was enough to imply Fermat's Last Theorem. Later, a series of papers by Wiles's former students Brian Conrad, Fred Diamond and Richard Taylor, culminating in a joint paper with Christophe Breuil, extended Wiles's techniques to prove the full modularity theorem in 2001. Before that, the statement was known as the Taniyama–Shimura conjecture, Taniyama–Shimura–Weil conjecture, or the modularity conjecture for elliptic curves. Statement The theorem states that any elliptic curve over \Q can be obtained via a rational map with integer coefficients from the classical modular curve for some integer ; this is a curve with integer coefficients with an explicit definition. This mapping is called a modular parametrization of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bulletin Of The American Mathematical Society
The ''Bulletin of the American Mathematical Society'' is a quarterly mathematical journal published by the American Mathematical Society. Scope It publishes surveys on contemporary research topics, written at a level accessible to non-experts. It also publishes, by invitation only, book reviews and short ''Mathematical Perspectives'' articles. History It began as the ''Bulletin of the New York Mathematical Society'' and underwent a name change when the society became national. The Bulletin's function has changed over the years; its original function was to serve as a research journal for its members. Indexing The Bulletin is indexed in Mathematical Reviews, Science Citation Index, ISI Alerting Services, CompuMath Citation Index, and Current Contents/Physical, Chemical & Earth Sciences. See also *'' Journal of the American Mathematical Society'' *'' Memoirs of the American Mathematical Society'' *'' Notices of the American Mathematical Society'' *'' Proceedings of the Ame ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deformation Theory
In mathematics, deformation theory is the study of infinitesimal conditions associated with varying a solution ''P'' of a problem to slightly different solutions ''P''ε, where ε is a small number, or a vector of small quantities. The infinitesimal conditions are the result of applying the approach of differential calculus to solving a problem with constraints. The name is an analogy to non-rigid structures that deform slightly to accommodate external forces. Some characteristic phenomena are: the derivation of first-order equations by treating the ε quantities as having negligible squares; the possibility of ''isolated solutions'', in that varying a solution may not be possible, ''or'' does not bring anything new; and the question of whether the infinitesimal constraints actually 'integrate', so that their solution does provide small variations. In some form these considerations have a history of centuries in mathematics, but also in physics and engineering. For example, in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zeta Functions
In mathematics, a zeta function is (usually) a function analogous to the original example, the Riemann zeta function : \zeta(s) = \sum_^\infty \frac 1 . Zeta functions include: * Airy zeta function, related to the zeros of the Airy function * Arakawa–Kaneko zeta function * Arithmetic zeta function * Artin–Mazur zeta function of a dynamical system * Barnes zeta function or double zeta function * Beurling zeta function of Beurling generalized primes * Dedekind zeta function of a number field * Duursma zeta function of error-correcting codes * Epstein zeta function of a quadratic form * Goss zeta function of a function field * Hasse–Weil zeta function of a variety * Height zeta function of a variety * Hurwitz zeta function, a generalization of the Riemann zeta function * Igusa zeta function * Ihara zeta function of a graph * ''L''-function, a "twisted" zeta function * Lefschetz zeta function of a morphism * Lerch zeta function, a generalization of the Riemann zeta functi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Space
In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines. This definition of a projective space has the disadvantage of not being isotropic, having two different sorts of points, which must be considered separately in proofs. Therefore, other definitions are generally preferred. There are two classes of definitions. In synthetic geometry, ''point'' and ''line'' are primitive entities that are related by the incidence relation "a point is on a line" or "a line passes through a point", which is subject to the axioms of projective geometry. For some such set of axioms, the projective spaces that are defined have been shown to be equivalent to those resulting from the f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]