Du Bois Singularities
In algebraic geometry, Du Bois singularities are singularities of complex varieties studied by Du Bois. Schwede gave the following characterisation of Du Bois singularities. Suppose that X is a reduced closed subscheme of a smooth scheme Y. Take a log resolution \pi: Z \to Y of X in Y that is an isomorphism outside X, and let E be the reduced preimage of X in Z. Then X has Du Bois singularities if and only if the induced map \mathcal_X \to R\pi_\mathcal_E is a quasi-isomorphism In homological algebra, a branch of mathematics, a quasi-isomorphism or quism is a morphism ''A'' → ''B'' of chain complexes (respectively, cochain complexes) such that the induced morphisms :H_n(A_\bullet) \to H_n(B_\bullet)\ (\text H^n(A^\bull .... Notes References * * Singularity theory Algebraic geometry {{algebraic-geometry-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects. The fundamental objects of study in algebraic geometry are algebraic variety, algebraic varieties, which are geometric manifestations of solution set, solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are line (geometry), lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscate of Bernoulli, lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular point of a curve, singular p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complex Algebraic Variety
Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each other * Complex (psychology), a core pattern of emotions etc. in the personal unconscious organized around a common theme such as power or status Complex may also refer to: Arts, entertainment and media * Complex (English band), formed in 1968, and their 1971 album ''Complex'' * Complex (band), a Japanese rock band * ''Complex'' (album), by Montaigne, 2019, and its title track * ''Complex'' (EP), by Rifle Sport, 1985 * "Complex" (song), by Gary Numan, 1979 * "Complex", a song by Katie Gregson-MacLeod, 2022 * "Complex" a song by Be'O and Zico, 2022 * Complex Networks, publisher of the now-only-online magazine ''Complex'' Biology * Protein–ligand complex, a complex of a protein bound with a ligand * Exosome complex, a multi- ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Reduced Scheme
This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme ''S'' and a morphism an ''S''-morphism. !$@ A B C D E F G H I J K L M N O P ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Closed Subscheme
This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme ''S'' and a morphism an ''S''-morphism. !$@ A B C D E F G H I J K L M N O P ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Smooth Scheme
In algebraic geometry, a smooth scheme over a field is a scheme which is well approximated by affine space near any point. Smoothness is one way of making precise the notion of a scheme with no singular points. A special case is the notion of a smooth variety over a field. Smooth schemes play the role in algebraic geometry of manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...s in topology. Definition First, let ''X'' be an affine scheme of Glossary of scheme theory#finite, finite type over a field ''k''. Equivalently, ''X'' has a closed immersion into affine space ''An'' over ''k'' for some natural number ''n''. Then ''X'' is the closed subscheme defined by some equations ''g''1 = 0, ..., ''g''''r'' = 0, where each ''gi'' is in the polynomial ring ''k''[''x''1,..., ''x' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quasi-isomorphism
In homological algebra, a branch of mathematics, a quasi-isomorphism or quism is a morphism ''A'' → ''B'' of chain complexes (respectively, cochain complexes) such that the induced morphisms :H_n(A_\bullet) \to H_n(B_\bullet)\ (\text H^n(A^\bullet) \to H^n(B^\bullet)) of homology groups (respectively, of cohomology groups) are isomorphisms for all ''n''. In the theory of model categories, quasi-isomorphisms are sometimes used as the class of weak equivalences when the objects of the category are chain or cochain complexes. This results in a homology-local theory, in the sense of Bousfield localization in homotopy theory. See also * Derived category In mathematics, the derived category ''D''(''A'') of an abelian category ''A'' is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on ''A''. The construction pr ... References *Gelfand, Sergei I., Manin, Yuri I. ''Methods of Homological Alge ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Singularity Theory
In mathematics, singularity theory studies spaces that are almost manifolds, but not quite. A string can serve as an example of a one-dimensional manifold, if one neglects its thickness. A singularity can be made by balling it up, dropping it on the floor, and flattening it. In some places the flat string will cross itself in an approximate "X" shape. The points on the floor where it does this are one kind of singularity, the double point: one bit of the floor corresponds to more than one bit of string. Perhaps the string will also touch itself without crossing, like an underlined "U". This is another kind of singularity. Unlike the double point, it is not ''stable'', in the sense that a small push will lift the bottom of the "U" away from the "underline". Vladimir Arnold defines the main goal of singularity theory as describing how objects depend on parameters, particularly in cases where the properties undergo sudden change under a small variation of the parameters. The ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |