Double Turnstile
In logic, the symbol ⊨, ⊧ or \models is called the double turnstile. It is often read as " entails", " models", "is a semantic consequence of" or "is stronger than". It is closely related to the turnstile symbol \vdash, which has a single bar across the middle, and which denotes '' syntactic'' consequence (in contrast to ''semantic''). Meaning The double turnstile is a binary relation. It has several different meanings in different contexts: * To show semantic consequence, with a set of sentences on the left and a single sentence on the right, to denote that if every sentence on the left is true, the sentence on the right must be true, e.g. \Gamma \vDash \varphi. This usage is closely related to the single-barred turnstile symbol which denotes syntactic consequence. * To show satisfaction, with a model (or truth-structure) on the left and a set of sentences on the right, to denote that the structure is a model for (or satisfies) the set of sentences, e.g. \mathcal \model ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. Informal logic examines arguments expressed in natural language whereas formal logic uses formal language. When used as a countable noun, the term "a logic" refers to a specific logical formal system that articulates a proof system. Logic plays a central role in many fields, such as philosophy, mathematics, computer science, and linguistics. Logic studies arguments, which consist of a set of premises that leads to a conclusion. An example is the argument from the premises "it's Sunday" and "if it's Sunday then I don't have to work" leading to the conclusion "I don't have to wor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Composition (combinatorics)
In mathematics, a composition of an integer ''n'' is a way of writing ''n'' as the summation, sum of a sequence of (strictly) positive integers. Two sequences that differ in the order of their terms define different compositions of their sum, while they are considered to define the same integer partition of that number. Every integer has finitely many distinct compositions. Negative numbers do not have any compositions, but 0 has one composition, the empty sequence. Each positive integer ''n'' has 2''n''−1 distinct compositions. A weak composition of an integer ''n'' is similar to a composition of ''n'', but allowing terms of the sequence to be zero: it is a way of writing ''n'' as the sum of a sequence of non-negative integers. As a consequence every positive integer admits infinitely many weak compositions (if their length is not bounded). Adding a number of terms 0 to the ''end'' of a weak composition is usually not considered to define a different weak composition; in other ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logic Symbols
In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, and the LaTeX symbol. Basic logic symbols Advanced or rarely used logical symbols The following symbols are either advanced and context-sensitive or very rarely used: See also * Glossary of logic * Józef Maria Bocheński * List of notation used in Principia Mathematica * List of mathematical symbols * Logic alphabet, a suggested set of logical symbols * * Logical connective * Mathematical operators and symbols in Unicode * Non-logical symbol * Polish notation * Truth function * Truth table * Wikipedia:WikiProject Logic/Standards for notation References Further reading * Józef Maria Bocheński (195 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Logic
Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Symbols
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a mathematical formula, formula or a mathematical expression. More formally, a ''mathematical symbol'' is any grapheme used in mathematical formulas and expressions. As formulas and expressions are entirely constituted with symbols of various types, many symbols are needed for expressing all mathematics. The most basic symbols are the decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), and the letters of the Latin alphabet. The decimal digits are used for representing numbers through the Hindu–Arabic numeral system. Historically, upper-case letters were used for representing point (geometry), points in geometry, and lower-case letters were used for variable (mathematics), variables and constant (mathematics), constants. Letters are used for representin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Turnstile (symbol)
In mathematical logic and computer science the symbol ⊢ (\vdash) has taken the name turnstile because of its resemblance to a typical turnstile. It is also referred to as tee and is often read as "yields", "proves", "satisfies" or "entails". Interpretations The turnstile represents a binary relation. It has several different interpretations in different contexts: * In epistemology, Per Martin-Löf (1996) analyzes the \vdash symbol thus: "... e combination of Frege's , judgement stroke and , content stroke �� came to be called the assertion sign." Frege's notation for a judgement of some content ::\vdash A :can then be read ::''I know is true''. :In the same vein, a conditional assertion ::P \vdash Q :can be read as: ::''From , I know that '' * In metalogic, the study of formal languages; the turnstile represents syntactic consequence (or "derivability"). This is to say, that it shows that one string can be derived from another in a single step, according to t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
List Of Mathematical Symbols
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula or a mathematical expression. More formally, a ''mathematical symbol'' is any grapheme used in mathematical formulas and expressions. As formulas and expressions are entirely constituted with symbols of various types, many symbols are needed for expressing all mathematics. The most basic symbols are the decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), and the letters of the Latin alphabet. The decimal digits are used for representing numbers through the Hindu–Arabic numeral system. Historically, upper-case letters were used for representing points in geometry, and lower-case letters were used for variables and constants. Letters are used for representing many other types of mathematical object. As the number of these types has increased, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
List Of Logic Symbols
In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, and the LaTeX symbol. Basic logic symbols Advanced or rarely used logical symbols The following symbols are either advanced and context-sensitive or very rarely used: See also * Glossary of logic * Józef Maria Bocheński * List of notation used in Principia Mathematica * List of mathematical symbols * Logic alphabet, a suggested set of logical symbols * * Logical connective * Mathematical operators and symbols in Unicode * Non-logical symbol * Polish notation * Truth function * Truth table * Wikipedia:WikiProject Logic/Standards for notation References Further reading * Józef Maria Bocheński ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
LaTeX
Latex is an emulsion (stable dispersion) of polymer microparticles in water. Latices are found in nature, but synthetic latices are common as well. In nature, latex is found as a wikt:milky, milky fluid, which is present in 10% of all flowering plants (angiosperms) and in some Mushroom, mushrooms (especially species of ''Lactarius''). It is a complex emulsion that coagulation, coagulates on exposure to air, consisting of proteins, alkaloids, starches, sugars, Vegetable oil, oils, tannins, resins, and Natural gum, gums. It is usually exuded after tissue injury. In most plants, latex is white, but some have yellow, orange, or scarlet latex. Since the 17th century, latex has been used as a term for the fluid substance in plants, deriving from the Latin word for "liquid". It serves mainly as Antipredator adaptation, defense against Herbivore, herbivores and Fungivore, fungivores.Taskirawati, I. and Tuno, N., 2016Fungal defense against mycophagy in milk caps ''Science Report Kanazaw ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tautology (logic)
In mathematical logic, a tautology (from ) is a formula that is true regardless of the interpretation of its component terms, with only the logical constants having a fixed meaning. For example, a formula that states, "the ball is green or the ball is not green," is always true, regardless of what a ball is and regardless of its colour. Tautology is usually, though not always, used to refer to valid formulas of propositional logic. The philosopher Ludwig Wittgenstein first applied the term to redundancies of propositional logic in 1921, borrowing from rhetoric, where a tautology is a repetitive statement. In logic, a formula is satisfiable if it is true under at least one interpretation, and thus a tautology is a formula whose negation is unsatisfiable. In other words, it cannot be false. Unsatisfiable statements, both through negation and affirmation, are known formally as contradictions. A formula that is neither a tautology nor a contradiction is said to be logically c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symbol (formal)
A logical symbol is a fundamental concept in logic, type–token distinction, tokens of which may be marks or a configuration of marks which form a particular pattern. Although the term ''symbol'' in common use sometimes refers to the idea being symbolized, and at other times to the marks on a piece of paper or chalkboard which are being used to express that idea; in the formal languages studied in mathematics and logic, the term ''symbol'' refers to the idea, and the marks are considered to be a type-token distinction, token instance of the symbol. In logic, symbols build literal utility to illustrate ideas. Overview Symbols of a formal language need not be symbols ''of'' anything. For instance there are logical constants which do not refer to any idea, but rather serve as a form of punctuation in the language (e.g. parentheses). Symbols of a formal language must be capable of being specified without any reference to any interpretation (logic), interpretation of them. A symbol o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
T-schema
The T-schema ("truth schema", not to be confused with " Convention T") is used to check if an inductive definition of truth is valid, which lies at the heart of any realisation of Alfred Tarski's semantic theory of truth. Some authors refer to it as the "Equivalence Schema", a synonym introduced by Michael Dummett. The T-schema is often expressed in natural language, but it can be formalized in many-sorted predicate logic or modal logic; such a formalisation is called a "T-theory." T-theories form the basis of much fundamental work in philosophical logic, where they are applied in several important controversies in analytic philosophy. As expressed in semi-natural language (where 'S' is the name of the sentence abbreviated to S): 'S' is true if and only if S. Example: 'snow is white' is true if and only if snow is white. The inductive definition By using the schema one can give an inductive definition for the truth of compound sentences. Atomic sentences are assigned truth ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |