Double-precision
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide dynamic range of numeric values by using a floating radix point. Floating point is used to represent fractional values, or when a wider range is needed than is provided by fixed point (of the same bit width), even if at the cost of precision. Double precision may be chosen when the range or precision of single precision would be insufficient. In the IEEE 754-2008 standard, the 64-bit base-2 format is officially referred to as binary64; it was called double in IEEE 754-1985. IEEE 754 specifies additional floating-point formats, including 32-bit base-2 ''single precision'' and, more recently, base-10 representations. One of the first programming languages to provide single- and double-precision floating-point data types was Fortran. Before the widespread adoption of IEEE 754-1985, the representation and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Floating-point Arithmetic
In computing, floating-point arithmetic (FP) is arithmetic that represents real numbers approximately, using an integer with a fixed precision, called the significand, scaled by an integer exponent of a fixed base. For example, 12.345 can be represented as a base-ten floating-point number: 12.345 = \underbrace_\text \times \underbrace_\text\!\!\!\!\!\!^ In practice, most floating-point systems use base two, though base ten ( decimal floating point) is also common. The term ''floating point'' refers to the fact that the number's radix point can "float" anywhere to the left, right, or between the significant digits of the number. This position is indicated by the exponent, so floating point can be considered a form of scientific notation. A floating-point system can be used to represent, with a fixed number of digits, numbers of very different orders of magnitude — such as the number of meters between galaxies or between protons in an atom. For this reason, floating ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
64-bit MBF
In computing, Microsoft Binary Format (MBF) is a format for floating-point numbers which was used in Microsoft's BASIC language products, including MBASIC, GW-BASIC and QuickBASIC prior to version 4.00. There are two main versions of the format. The original version was designed for memory-constrained systems and stored numbers in 32 bits (4 bytes), with a 23-bit mantissa, 1-bit sign, and an 8-bit exponent. Extended (12k) BASIC included a double-precision type with 64 bits. During the period when it was being ported from the Intel 8080 platform to the MOS 6502 processor, computers were beginning to ship with more memory as a standard feature. This version was offered with the original 32-bit format or an optional expanded 40-bit (5-byte) format. The 40-bit format was used by most home computers of the 1970s and 1980s. These two versions are sometimes known as "6-digit" and "9-digit", respectively. On PCs with x86 processor, QuickBASIC, prior to versi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Single-precision Floating-point Format
Single-precision floating-point format (sometimes called FP32 or float32) is a computer number format, usually occupying 32 bits in computer memory; it represents a wide dynamic range of numeric values by using a floating radix point. A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 231 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2−23) × 2127 ≈ 3.4028235 × 1038. All integers with 7 or fewer decimal digits, and any 2''n'' for a whole number −149 ≤ ''n'' ≤ 127, can be converted exactly into an IEEE 754 single-precision floating-point value. In the IEEE 754-2008 standard, the 32-bit base-2 format is officially referred to as binary32; it was called single in IEEE 754-1985. IEEE 754 specifies additional floating-point types, such as 64-bit base-2 ''double p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Single Precision
Single-precision floating-point format (sometimes called FP32 or float32) is a computer number format, usually occupying 32 bits in computer memory; it represents a wide dynamic range of numeric values by using a floating radix point. A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 231 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2−23) × 2127 ≈ 3.4028235 × 1038. All integers with 7 or fewer decimal digits, and any 2''n'' for a whole number −149 ≤ ''n'' ≤ 127, can be converted exactly into an IEEE 754 single-precision floating-point value. In the IEEE 754-2008 standard, the 32-bit base-2 format is officially referred to as binary32; it was called single in IEEE 754-1985. IEEE 754 specifies additional floating-point types, such as 64-bit base-2 '' dou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ARM Architecture
ARM (stylised in lowercase as arm, formerly an acronym for Advanced RISC Machines and originally Acorn RISC Machine) is a family of reduced instruction set computer (RISC) instruction set architectures for computer processors, configured for various environments. Arm Ltd. develops the architectures and licenses them to other companies, who design their own products that implement one or more of those architectures, including system on a chip (SoC) and system on module (SOM) designs, that incorporate different components such as memory, interfaces, and radios. It also designs cores that implement these instruction set architectures and licenses these designs to many companies that incorporate those core designs into their own products. There have been several generations of the ARM design. The original ARM1 used a 32-bit internal structure but had a 26-bit address space that limited it to 64 MB of main memory. This limitation was removed in the ARMv3 series, w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Significand
The significand (also mantissa or coefficient, sometimes also argument, or ambiguously fraction or characteristic) is part of a number in scientific notation or in floating-point representation, consisting of its significant digits. Depending on the interpretation of the exponent, the significand may represent an integer or a fraction. Example The number 123.45 can be represented as a decimal floating-point number with the integer 12345 as the significand and a 10−2 power term, also called characteristics, where −2 is the exponent (and 10 is the base). Its value is given by the following arithmetic: : 123.45 = 12345 × 10−2. The same value can also be represented in normalized form with 1.2345 as the fractional coefficient, and +2 as the exponent (and 10 as the base): : 123.45 = 1.2345 × 10+2. Schmid, however, called this representation with a significand ranging between 1.0 and 10 a modified normalized form. For base 2, this 1.xxxx form is also called a normalize ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
IEEE 754-1985
IEEE 754-1985 was an industry standard for representing floating-point numbers in computers, officially adopted in 1985 and superseded in 2008 by IEEE 754-2008, and then again in 2019 by minor revision IEEE 754-2019. During its 23 years, it was the most widely used format for floating-point computation. It was implemented in software, in the form of floating-point libraries, and in hardware, in the instructions of many CPUs and FPUs. The first integrated circuit to implement the draft of what was to become IEEE 754-1985 was the Intel 8087. IEEE 754-1985 represents numbers in binary, providing definitions for four levels of precision, of which the two most commonly used are: The standard also defines representations for positive and negative infinity, a " negative zero", five exceptions to handle invalid results like division by zero, special values called NaNs for representing those exceptions, denormal numbers to represent numbers smaller than shown above, and fou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Significand
The significand (also mantissa or coefficient, sometimes also argument, or ambiguously fraction or characteristic) is part of a number in scientific notation or in floating-point representation, consisting of its significant digits. Depending on the interpretation of the exponent, the significand may represent an integer or a fraction. Example The number 123.45 can be represented as a decimal floating-point number with the integer 12345 as the significand and a 10−2 power term, also called characteristics, where −2 is the exponent (and 10 is the base). Its value is given by the following arithmetic: : 123.45 = 12345 × 10−2. The same value can also be represented in normalized form with 1.2345 as the fractional coefficient, and +2 as the exponent (and 10 as the base): : 123.45 = 1.2345 × 10+2. Schmid, however, called this representation with a significand ranging between 1.0 and 10 a modified normalized form. For base 2, this 1.xxxx form is also called a normalize ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computer Number Format
A computer number format is the internal representation of numeric values in digital device hardware and software, such as in programmable computers and calculators. Numerical values are stored as groupings of bits, such as bytes and words. The encoding between numerical values and bit patterns is chosen for convenience of the operation of the computer; the encoding used by the computer's instruction set generally requires conversion for external use, such as for printing and display. Different types of processors may have different internal representations of numerical values and different conventions are used for integer and real numbers. Most calculations are carried out with number formats that fit into a processor register, but some software systems allow representation of arbitrarily large numbers using multiple words of memory. Binary number representation Computers represent data in sets of binary digits. The representation is composed of bits, which in turn are grouped ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Machine Epsilon
Machine epsilon or machine precision is an upper bound on the relative approximation error due to rounding in floating point arithmetic. This value characterizes computer arithmetic in the field of numerical analysis, and by extension in the subject of computational science. The quantity is also called macheps and it has the symbols Greek epsilon \varepsilon. There are two prevailing definitions. In numerical analysis, machine epsilon is dependent on the type of rounding used and is also called unit roundoff, which has the symbol bold Roman u. However, by a less formal, but more widely-used definition, machine epsilon is independent of rounding method and may be equivalent to u or 2u. Values for standard hardware arithmetics The following table lists machine epsilon values for standard floating-point formats. Each format uses round-to-nearest. Formal definition ''Rounding'' is a procedure for choosing the representation of a real number in a floating point number syst ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exponent Bias
In IEEE 754 floating-point numbers, the exponent is biased in the engineering sense of the word – the value stored is offset from the actual value by the exponent bias, also called a biased exponent. Biasing is done because exponents have to be signed values in order to be able to represent both tiny and huge values, but two's complement, the usual representation for signed values, would make comparison harder. To solve this problem the exponent is stored as an unsigned value which is suitable for comparison, and when being interpreted it is converted into an exponent within a signed range by subtracting the bias. By arranging the fields such that the sign bit takes the most significant bit position, the biased exponent takes the middle position, then the significand will be the least significant bits and the resulting value will be ordered properly. This is the case whether or not it is interpreted as a floating-point or integer value. The purpose of this is to enable high spe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fixed-point Arithmetic
In computing, fixed-point is a method of representing fractional (non-integer) numbers by storing a fixed number of digits of their fractional part. Dollar amounts, for example, are often stored with exactly two fractional digits, representing the cents (1/100 of dollar). More generally, the term may refer to representing fractional values as integer multiples of some fixed small unit, e.g. a fractional amount of hours as an integer multiple of ten-minute intervals. Fixed-point number representation is often contrasted to the more complicated and computationally demanding floating-point representation. In the fixed-point representation, the fraction is often expressed in the same number base as the integer part, but using negative powers of the base ''b''. The most common variants are decimal (base 10) and binary (base 2). The latter is commonly known also as binary scaling. Thus, if ''n'' fraction digits are stored, the value will always be an integer multiple of ''b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |