HOME



picture info

Dissection (geometry)
In geometry, a dissection problem is the problem of partitioning a geometric figure (such as a polytope or ball) into smaller pieces that may be rearranged into a new figure of equal content. In this context, the partitioning is called simply a dissection (of one polytope into another). It is usually required that the dissection use only a finite number of pieces. Additionally, to avoid set-theoretic issues related to the Banach–Tarski paradox and Tarski's circle-squaring problem, the pieces are typically required to be well-behaved. For instance, they may be restricted to being the closures of disjoint open sets. Polygon dissection problem The Bolyai–Gerwien theorem states that any polygon may be dissected into any other polygon of the same area, using interior-disjoint polygonal pieces. It is not true, however, that any polyhedron has a dissection into any other polyhedron of the same volume using polyhedral pieces (see Dehn invariant). This process ''is'' possible, how ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a ''List of geometers, geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point (geometry), point, line (geometry), line, plane (geometry), plane, distance, angle, surface (mathematics), surface, and curve, as fundamental concepts. Originally developed to model the physical world, geometry has applications in almost all sciences, and also in art, architecture, and other activities that are related to graphics. Geometry also has applications in areas of mathematics that are apparently unrelated. For example, methods of algebraic geometry are fundamental in Wiles's proof of Fermat's Last Theorem, Wiles's proof of Fermat's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangle
A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called ''vertices'', are zero-dimensional points while the sides connecting them, also called ''edges'', are one-dimensional line segments. A triangle has three internal angles, each one bounded by a pair of adjacent edges; the sum of angles of a triangle always equals a straight angle (180 degrees or π radians). The triangle is a plane figure and its interior is a planar region. Sometimes an arbitrary edge is chosen to be the ''base'', in which case the opposite vertex is called the ''apex''; the shortest segment between the base and apex is the ''height''. The area of a triangle equals one-half the product of height and base length. In Euclidean geometry, any two points determine a unique line segment situated within a unique straight line, and any three points that do not all lie on the same straight line determine a unique triangle situated w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Discrete Geometry
Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object. Discrete geometry has a large overlap with convex geometry and computational geometry, and is closely related to subjects such as finite geometry, combinatorial optimization, digital geometry, discrete differential geometry, geometric graph theory, toric geometry, and combinatorial topology. History Polyhedra and tessellations had been studied for many years by people such as Kepler and Cauchy, modern discrete geometry has its origins in the late 19th century. Early topics s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




David Eppstein
David Arthur Eppstein (born 1963) is an American computer scientist and mathematician. He is a distinguished professor of computer science at the University of California, Irvine. He is known for his work in computational geometry, graph algorithms, and recreational mathematics. In 2011, he was named an ACM Fellow. Biography Born in Windsor, England, in 1963, Eppstein received a B.S. in mathematics from Stanford University in 1984, and later an M.S. (1985) and Ph.D. (1989) in computer science from Columbia University, after which he took a postdoctoral position at Xerox's Palo Alto Research Center. He joined the UC Irvine faculty in 1990, and was co-chair of the Computer Science Department there from 2002 to 2005. In 2014, he was named a Chancellor's Professor. In October 2017, Eppstein was one of 396 members elected as fellows of the American Association for the Advancement of Science. Eppstein is an amateur digital photographer. He is also a Wikipedia editor and admi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert's Third Problem
The third of Hilbert's problems, Hilbert's list of mathematical problems, presented in 1900, was the first to be solved. The problem is related to the following question: given any two polyhedron, polyhedra of equal volume, is it always possible to cut the first into finitely many polyhedral pieces which can be reassembled to yield the second? Based on earlier writings by Carl Friedrich Gauss, David Hilbert conjectured that this is not always possible. This was confirmed within the year by his student Max Dehn, who proved that the answer in general is "no" by producing a counterexample. The answer for the analogous question about polygons in 2 dimensions is "yes" and had been known for a long time; this is the Wallace–Bolyai–Gerwien theorem. Unknown to Hilbert and Dehn, Hilbert's third problem was also proposed independently by Władysław Kretkowski for a math contest of 1882 by the Academy of Arts and Sciences of Kraków, and was solved by Ludwik Birkenmajer, Ludwik Antoni B ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Erik Demaine
Erik D. Demaine (born February 28, 1981) is a Canadian-American professor of computer science at the Massachusetts Institute of Technology and a former child prodigy. Early life and education Demaine was born in Halifax, Nova Scotia, to mathematician and sculptor Martin L. Demaine and Judy Anderson. From the age of 7, he was identified as a child prodigy and spent time traveling across North America with his father. He was home-schooled during that time span until entering university at the age of 12. Demaine completed his bachelor's degree at 14 years of age at Dalhousie University in Canada, and completed his PhD at the University of Waterloo by the time he was 20 years old. Demaine's PhD dissertation, a work in the field of computational origami, was completed at the University of Waterloo under the supervision of Anna Lubiw and Ian Munro. This work was awarded the Canadian Governor General's Gold Medal from the University of Waterloo and the NSERC Doctoral Prize (200 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hinged Dissection
In geometry, a hinged dissection, also known as a swing-hinged dissection or Dudeney dissection, is a kind of dissection problem, geometric dissection in which all of the pieces are connected into a chain by "hinged" points, such that the rearrangement from one Shape, figure to another can be carried out by swinging the chain continuously, without severing any of the connections. Typically, it is assumed that the pieces are allowed to overlap in the folding and unfolding process; this is sometimes called the "wobbly-hinged" model of hinged dissection. History The concept of hinged dissections was popularised by the author of mathematical puzzles, Henry Dudeney. He introduced the famous hinged dissection of a square into a triangle (pictured) in his 1907 book The Canterbury Puzzles.Frederickson 2002, p.1 The Wallace–Bolyai–Gerwien theorem, first proven in 1807, states that any two equal-area polygons must have a common dissection. However, the question of whether two such p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equilateral Triangle
An equilateral triangle is a triangle in which all three sides have the same length, and all three angles are equal. Because of these properties, the equilateral triangle is a regular polygon, occasionally known as the regular triangle. It is the special case of an isosceles triangle by modern definition, creating more special properties. The equilateral triangle can be found in various tilings, and in polyhedrons such as the deltahedron and antiprism. It appears in real life in popular culture, architecture, and the study of stereochemistry resembling the molecular known as the trigonal planar molecular geometry. Properties An equilateral triangle is a triangle that has three equal sides. It is a special case of an isosceles triangle in the modern definition, stating that an isosceles triangle is defined at least as having two equal sides. Based on the modern definition, this leads to an equilateral triangle in which one of the three sides may be considered its base. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sunday Dispatch
The ''Sunday Dispatch'' was a prominent British newspaper, published between 27 September 1801 and 18 June 1961. It was ultimately discontinued due to its merger with the ''Sunday Express''. History The newspaper was first published as the ''Weekly Dispatch'' in 1801, and was owned in the mid-1800s by notable solicitor James Harmer, who served as a model for Jaggers, the Charles Dickens character from '' Great Expectations''. The newspaper's name was changed to the ''Sunday Dispatch'' in 1928. In 1903, the Newnes family sold the paper to Alfred and Harold Harmsworth. The new owners then turned it around from bankruptcy and into the biggest selling Sunday newspaper in Britain at the time. Due to editor Charles Eade's role as Press Liaison officer for Lord Mountbatten during World War II, distribution of the ''Dispatch'' was up from 800,000 to over 2 million copies per edition in 1947. In 1959, Eade and the editor of the ''Daily Sketch'' were fired due to a comment from Ran ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Henry Dudeney
Henry Ernest Dudeney (10 April 1857 – 23 April 1930) was an English author and mathematician who specialised in logic puzzles and mathematical games. He is known as one of the foremost creators of mathematical puzzles. Early life Dudeney was born in the village of Mayfield, East Sussex, England, one of six children of Gilbert and Lucy Dudeney. His grandfather, John Dudeney, was well known as a self-taught mathematician and shepherd; his initiative was much admired by his grandson. Dudeney learned to play chess at an early age, and continued to play frequently throughout his life. This led to a marked interest in mathematics and the composition of puzzles. Chess problems in particular fascinated him during his early years. Career Although Dudeney spent his career in the Civil Service, he continued to devise various problems and puzzles. Dudeney's first puzzle contributions were submissions to newspapers and magazines, often under the pseudonym of "Sphinx." Much of this ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dissection Puzzle
A dissection puzzle, also called a transformation puzzle or Richter puzzle, is a tiling puzzle where a set of pieces can be assembled in different ways to produce two or more distinct geometric shapes. The creation of new dissection puzzles is also considered to be a type of dissection puzzle. Puzzles may include various restraints, such as hinged pieces, pieces that can fold, or pieces that can twist. Creators of new dissection puzzles emphasize using a minimum number of pieces, or creating novel situations, such as ensuring that every piece connects to another with a hinge. History Dissection puzzles are an early form of geometric puzzle. The earliest known descriptions of dissection puzzles are from the time of Plato (427–347 BCE) in Ancient Greece, and involve the challenge of turning two equal squares into one larger square using four pieces. Other ancient dissection puzzles were used as graphic depictions of the Pythagorean theorem (see square trisection). A fa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hinged Haberdasher Square
A hinge is a mechanical bearing that connects two solid objects, typically allowing only a limited angle of rotation between them. Two objects connected by an ideal hinge rotate relative to each other about a fixed axis of rotation, with all other translations or rotations prevented; thus a hinge has one degree of freedom. Hinges may be made of flexible material or moving components. In biology, many joints function as hinges, such as the elbow joint. History Ancient remains of stone, marble, wood, and bronze hinges have been found. Some date back to at least Ancient Egypt, although it is nearly impossible to pinpoint exactly where and when the first hinges were used. In Ancient Rome, hinges were called cardō and gave name to the goddess Cardea and the main street Cardo. This name cardō lives on figuratively today as "the chief thing (on which something turns or depends)" in words such as ''cardinal''. According to the Oxford English Dictionary, the English word ''hinge' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]