HOME





Dimensional Transmutation
In particle physics, dimensional transmutation is a physical mechanism providing a linkage between a dimensionless parameter and a dimensionful parameter.Cao, Tian Yu. From Current Algebra to Quantum Chromodynamics: A Case for Structural Realism'. Cambridge University Press, 2010. 163. In classical field theory, such as gauge theory in four-dimensional spacetime, the coupling constant is a dimensionless constant. However, upon quantization, logarithmic divergences in one-loop diagrams of perturbation theory imply that this "constant" actually depends on the typical energy scale of the processes under considerations, called the renormalization group In theoretical physics, the renormalization group (RG) is a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the underlying p ... (RG) scale. This "running" of the coupling is specified by the Beta function (phy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Particle Physics
Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the study of combinations of protons and neutrons is called nuclear physics. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three Generation (particle physics), generations of fermions, although ordinary matter is made only from the first fermion generation. The first generation consists of Up quark, up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction. Quark, Quarks cannot exist on their own but form hadrons. Hadrons that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Beta Function (physics)
In theoretical physics, specifically quantum field theory, a beta function or Gell-Mann–Low function, ''β(g)'', encodes the dependence of a coupling parameter, ''g'', on the energy scale, ''μ'', of a given physical process described by quantum field theory. It is defined by the Gell-Mann–Low equation or renormalization group equation, given by :: \beta(g) = \mu \frac = \frac ~, and, because of the underlying renormalization group, it has no explicit dependence on ''μ'', so it only depends on ''μ'' implicitly through ''g''. This dependence on the energy scale thus specified is known as the running of the coupling parameter, a fundamental feature of scale-dependence in quantum field theory, and its explicit computation is achievable through a variety of mathematical techniques. The concept of beta function was first introduced by Ernst Stueckelberg and André Petermann in 1953, and independently postulated by Murray Gell-Mann and Francis E. Low in 1954. History ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conformal Anomaly
A conformal anomaly, scale anomaly, trace anomaly or Weyl anomaly is an anomaly, i.e. a quantum phenomenon that breaks the conformal symmetry of the classical theory. In quantum field theory when we set Planck constant \hbar to zero we have only Feynman tree diagrams, which is a "classical" theory (equivalent to the Fredholm theory of a classical field theory). One-loop (''N''-loop) Feynman diagrams are proportional to \hbar (\hbar^N). If a current is conserved classically (\hbar=0) but develops a divergence at loop level in quantum field theory (\propto \hbar), we say there is an anomaly. A famous example is the axial current anomaly where massless fermions will have a classically conserved axial current, but which develops a nonzero divergence in the presence of gauge fields. A scale invariant theory, one in which there are no mass scales, will have a conserved Noether current called the "scale current." This is derived by performing scale transformations on the coordina ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Anomaly (physics)
In quantum physics an anomaly or quantum anomaly is the failure of a symmetry of a theory's classical action to be a symmetry of any regularization of the full quantum theory. In classical physics, a classical anomaly is the failure of a symmetry to be restored in the limit in which the symmetry-breaking parameter goes to zero. Perhaps the first known anomaly was the dissipative anomaly in turbulence: time-reversibility remains broken (and energy dissipation rate finite) at the limit of vanishing viscosity Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e .... In quantum theory, the first anomaly discovered was the Adler–Bell–Jackiw anomaly, wherein the Chiral_anomaly, axial vector current is conserved as a classical symmetry of electrodynamics, but is broken by the quantized ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conformal Symmetry
Conformal symmetry is a property of spacetime that ensures angles remain unchanged even when distances are altered. If you stretch, compress, or otherwise distort spacetime, the local angular relationships between lines or curves stay the same. This idea extends the familiar Poincaré group —which accounts for rotations, translations, and boosts—into the more comprehensive conformal group. Conformal symmetry encompasses special conformal transformations and dilations. In three spatial plus one time dimensions, conformal symmetry has 15 degrees of freedom: ten for the Poincaré group, four for special conformal transformations, and one for a dilation. Harry Bateman and Ebenezer Cunningham were the first to study the conformal symmetry of Maxwell's equations. They called a generic expression of conformal symmetry a spherical wave transformation. General relativity in two spacetime dimensions also enjoys conformal symmetry. Generators The Lie algebra of the conformal grou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ultraviolet Cutoff
Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of the total electromagnetic radiation output from the Sun. It is also produced by electric arcs, Cherenkov radiation, and specialized lights, such as mercury-vapor lamps, tanning lamps, and black lights. The photons of ultraviolet have greater energy than those of visible light, from about 3.1 to 12 electron volts, around the minimum energy required to ionize atoms. Although long-wavelength ultraviolet is not considered an ionizing radiation because its photons lack sufficient energy, it can induce chemical reactions and cause many substances to glow or fluoresce. Many practical applications, including chemical and biological effects, are derived from the way that UV radiation can interact with organic molecules. These interacti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Infrared Cutoff
In theoretical physics, cutoff (AE: cutoff, BE: cut-off) is an arbitrary maximal or minimal value of energy, momentum In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ..., or length, used in order that objects with larger or smaller values than these physical quantity, physical quantities are ignored in some calculation. It is usually represented within a particular energy scale, energy or length scale, such as Planck units. When used in this context, the traditional terms "infrared" and "ultraviolet" are not literal references to specific regions of the spectrum, but rather refer by analogy to portions of a calculation for low energies (infrared) and high energies (ultraviolet), respectively. Infrared and ultraviolet cutoff An infrared cutoff (long-distance cutoff) is the minimal va ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

QCD Scale
In physics, a coupling constant or gauge coupling parameter (or, more simply, a coupling), is a number that determines the strength of the force exerted in an interaction. Originally, the coupling constant related the force acting between two static bodies to the " charges" of the bodies (i.e. the electric charge for electrostatic and the mass for Newtonian gravity) divided by the distance squared, r^2, between the bodies; thus: G in F=G m_1 m_2/r^2 for Newtonian gravity and k_\text in F=k_\textq_1 q_2/r^2 for electrostatic. This description remains valid in modern physics for linear theories with static bodies and massless force carriers. A modern and more general definition uses the Lagrangian \mathcal (or equivalently the Hamiltonian \mathcal) of a system. Usually, \mathcal (or \mathcal) of a system describing an interaction can be separated into a ''kinetic part'' T and an ''interaction part'' V: \mathcal=T-V (or \mathcal=T+V). In field theory, V always contains 3 fields ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Chromodynamics
In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of quantum field theory called a non-abelian gauge theory, with symmetry group special unitary group, SU(3). The QCD analog of electric charge is a property called ''color''. Gluons are the force carriers of the theory, just as photons are for the electromagnetic force in quantum electrodynamics. The theory is an important part of the Standard Model of particle physics. A large body of Quantum chromodynamics#Experimental tests, experimental evidence for QCD has been gathered over the years. QCD exhibits three salient properties: * Color confinement. Due to the force between two color charges remaining constant as they are separated, the energy grows until a quark–antiquark pair is mass–energy equivalence, spontaneously produced, turning ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Renormalization Group
In theoretical physics, the renormalization group (RG) is a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the underlying physical laws (codified in a quantum field theory) as the energy (or mass) scale at which physical processes occur varies. A change in scale is called a scale transformation. The renormalization group is intimately related to ''scale invariance'' and ''conformal invariance'', symmetries in which a system appears the same at all scales ( self-similarity), where under the fixed point of the renormalization group flow the field theory is conformally invariant. As the scale varies, it is as if one is decreasing (as RG is a semi-group and doesn't have a well-defined inverse operation) the magnifying power of a notional microscope viewing the system. In so-called renormalizable theories, the system at one scale will generally consist of self- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dimensionless
Dimensionless quantities, or quantities of dimension one, are quantities implicitly defined in a manner that prevents their aggregation into units of measurement. ISBN 978-92-822-2272-0. Typically expressed as ratios that align with another system, these quantities do not necessitate explicitly defined units. For instance, alcohol by volume (ABV) represents a volumetric ratio; its value remains independent of the specific units of volume used, such as in milliliters per milliliter (mL/mL). The number one is recognized as a dimensionless base quantity. Radians serve as dimensionless units for angular measurements, derived from the universal ratio of 2π times the radius of a circle being equal to its circumference. Dimensionless quantities play a crucial role serving as parameters in differential equations in various technical disciplines. In calculus, concepts like the unitless ratios in limits or derivatives often involve dimensionless quantities. In differential geom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Energy Scale
This list compares various energies in joules (J), organized by order of magnitude. Below 1 J 1 to 105 J 106 to 1011 J 1012 to 1017 J 1018 to 1023 J Over 1024 J SI multiples See also * Conversion of units of energy * Energy conversion efficiency * Energy density * Metric system * Outline of energy * Scientific notation * TNT equivalent Notes {{DEFAULTSORT:Orders of Magnitude (Energy) Energy * Energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]