Differentiation Of Measures (other)
In mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ..., differentiation of measures may refer to: * the problem of differentiation of integrals, also known as the differentiation problem for measures; * the Radon–Nikodym derivative of one measure with respect to another. * the theory of differentiable measures. {{mathematical disambiguation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differentiation Of Integrals
In mathematics, the problem of differentiation of integrals is that of determining under what circumstances the mean value integral of a suitable function on a small neighbourhood of a point approximates the value of the function at that point. More formally, given a space ''X'' with a measure ''μ'' and a metric ''d'', one asks for what functions ''f'' : ''X'' → R does \lim_ \frac1 \int_ f(y) \, \mathrm \mu(y) = f(x) for all (or at least ''μ''-almost all) ''x'' ∈ ''X''? (Here, as in the rest of the article, ''B''''r''(''x'') denotes the open ball in ''X'' with ''d''-radius ''r'' and centre ''x''.) This is a natural question to ask, especially in view of the heuristic construction of the Riemann integral, in which it is almost implicit that ''f''(''x'') is a "good representative" for the values of ''f'' near ''x''. Theorems on the differentiation of integrals Lebesgue measure One result on the differentiation of integrals is the Lebesg ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Measure Theory
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude (mathematics), magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integral, integration theory, and can be generalized to assume signed measure, negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to Ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile B ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |