Differential Exponent
In algebraic number theory, the different ideal (sometimes simply the different) is defined to measure the (possible) lack of duality in the ring of integers of an algebraic number field ''K'', with respect to the field trace. It then encodes the ramification data for prime ideals of the ring of integers. It was introduced by Richard Dedekind in 1882. Definition If ''O''''K'' is the ring of integers of ''K'', and ''tr'' denotes the field trace from ''K'' to the rational number field Q, then : x \mapsto \mathrm~x^2 is an integral quadratic form on ''O''''K''. Its discriminant as quadratic form need not be +1 (in fact this happens only for the case ''K'' = Q). Define the ''inverse different'' or ''codifferent'' or ''Dedekind's complementary module'' as the set ''I'' of ''x'' ∈ ''K'' such that tr(''xy'') is an integer for all ''y'' in ''O''''K'', then ''I'' is a fractional ideal of ''K'' containing ''O''''K''. By definition, the different ideal δ''K'' is the inverse fractional i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Number Theory
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and Algebraic function field, function fields. These properties, such as whether a ring (mathematics), ring admits unique factorization, the behavior of ideal (ring theory), ideals, and the Galois groups of field (mathematics), fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations. History Diophantus The beginnings of algebraic number theory can be traced to Diophantine equations, named after the 3rd-century Alexandrian mathematician, Diophantus, who studied them and developed methods for the solution of some kinds of Diophantine equations. A typical Diophantine problem is to find two in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Relative Norm
In mathematics, the (field) norm is a particular mapping defined in field theory, which maps elements of a larger field into a subfield. Formal definition Let ''K'' be a field and ''L'' a finite extension (and hence an algebraic extension) of ''K''. The field ''L'' is then a finite-dimensional vector space over ''K''. Multiplication by ''α'', an element of ''L'', :m_\alpha\colon L\to L :m_\alpha (x) = \alpha x, is a ''K''-linear transformation of this vector space into itself. The norm, N''L''/''K''(''α''), is defined as the determinant of this linear transformation. If ''L''/''K'' is a Galois extension, one may compute the norm of ''α'' ∈ ''L'' as the product of all the Galois conjugates of ''α'': :\operatorname_(\alpha)=\prod_ \sigma(\alpha), where Gal(''L''/''K'') denotes the Galois group of ''L''/''K''. (Note that there may be a repetition in the terms of the product.) For a general field extension ''L''/''K'', and nonzero ''α'' in ''L'', let ''σ''(''α''), ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cambridge University Press
Cambridge University Press was the university press of the University of Cambridge. Granted a letters patent by King Henry VIII in 1534, it was the oldest university press in the world. Cambridge University Press merged with Cambridge Assessment to form Cambridge University Press and Assessment under Queen Elizabeth II's approval in August 2021. With a global sales presence, publishing hubs, and offices in more than 40 countries, it published over 50,000 titles by authors from over 100 countries. Its publications include more than 420 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also published Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Sports and Social Centre. It also served as the King's Printer. Cambridge University Press, as part of the University of Cambridge, was a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Power Integral Basis
In mathematics, a monogenic field is an algebraic number field ''K'' for which there exists an element ''a'' such that the ring of integers ''O''''K'' is the subring Z 'a''of ''K'' generated by ''a''. Then ''O''''K'' is a quotient of the polynomial ring Z 'X''and the powers of ''a'' constitute a power integral basis. In a monogenic field ''K'', the field discriminant of ''K'' is equal to the discriminant of the minimal polynomial of α. Examples Examples of monogenic fields include: * Quadratic fields: : if K = \mathbf(\sqrt d) with d a square-free integer, then O_K = \mathbf /math> where a = (1+\sqrt d)/2 if ''d'' ≡ 1 (mod 4) and a = \sqrt d if ''d'' ≡ 2 or 3 (mod 4). * Cyclotomic fields: : if K = \mathbf(\zeta) with \zeta a root of unity, then O_K = \mathbfzeta Also the maximal real subfield \mathbf(\zeta)^ = \mathbf(\zeta + \zeta^) is monogenic, with ring of integers \mathbf zeta+\zeta^/math>. While all quadratic fields are monogenic, already among cubi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Simple Extension
In field theory, a simple extension is a field extension that is generated by the adjunction of a single element, called a ''primitive element''. Simple extensions are well understood and can be completely classified. The primitive element theorem provides a characterization of the finite simple extensions. Definition A field extension is called a simple extension if there exists an element in ''L'' with :L = K(\theta). This means that every element of can be expressed as a rational fraction in , with coefficients in ; that is, it is produced from and elements of by the field operations +, −, •, / . Equivalently, is the smallest field that contains both ' and . There are two different kinds of simple extensions (see below): # The element may be transcendental over , which means that it is not a root of any polynomial with coefficients in . In this case K(\theta) is isomorphic to the field of rational functions K(X). # Otherwise, is algebraic over ; that is, i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Galois Extension
In mathematics, a Galois extension is an algebraic field extension ''E''/''F'' that is normal and separable; or equivalently, ''E''/''F'' is algebraic, and the field fixed by the automorphism group Aut(''E''/''F'') is precisely the base field ''F''. The significance of being a Galois extension is that the extension has a Galois group and obeys the fundamental theorem of Galois theory. A result of Emil Artin allows one to construct Galois extensions as follows: If ''E'' is a given field, and ''G'' is a finite group of automorphisms of ''E'' with fixed field ''F'', then ''E''/''F'' is a Galois extension. The property of an extension being Galois behaves well with respect to field composition and intersection. Characterization of Galois extensions An important theorem of Emil Artin states that for a finite extension E/F, each of the following statements is equivalent to the statement that E/F is Galois: *E/F is a normal extension and a separable extension. *E is a splitting ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hasse–Arf Theorem
In mathematics, specifically in local class field theory, the Hasse–Arf theorem is a result concerning jumps of the upper numbering filtration of the Galois group of a finite Galois extension. A special case of it when the residue fields are finite was originally proved by Helmut Hasse, and the general result was proved by Cahit Arf. Statement Higher ramification groups The theorem deals with the upper numbered higher ramification groups of a finite abelian extension L/K. So assume L/K is a finite Galois extension, and that v_K is a discrete normalised valuation of ''K'', whose residue field has characteristic ''p'' > 0, and which admits a unique extension to ''L'', say ''w''. Denote by v_L the associated normalised valuation ''ew'' of ''L'' and let \scriptstyle be the valuation ring of ''L'' under v_L. Let L/K have Galois group ''G'' and define the ''s''-th ramification group of L/K for any real ''s'' ≥ −1 by :G_s(L/K)=\. So, for example, ''G ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Wildly Ramified
In geometry, ramification is 'branching out', in the way that the square root function, for complex numbers, can be seen to have two ''branches'' differing in sign. The term is also used from the opposite perspective (branches coming together) as when a covering map degenerates at a point of a space, with some collapsing of the fibers of the mapping. In complex analysis In complex analysis, the basic model can be taken as the ''z'' → ''z''''n'' mapping in the complex plane, near ''z'' = 0. This is the standard local picture in Riemann surface theory, of ramification of order ''n''. It occurs for example in the Riemann–Hurwitz formula for the effect of mappings on the genus. In algebraic topology In a covering map the Euler–Poincaré characteristic should multiply by the number of sheets; ramification can therefore be detected by some dropping from that. The ''z'' → ''z''''n'' mapping shows this as a local pattern: if we exclude ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Steinitz Class
In mathematics, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily unique up to the order of the factors. There are at least three other characterizations of Dedekind domains that are sometimes taken as the definition: see below. A field is a commutative ring in which there are no nontrivial proper ideals, so that any field is a Dedekind domain, however in a rather vacuous way. Some authors add the requirement that a Dedekind domain not be a field. Many more authors state theorems for Dedekind domains with the implicit proviso that they may require trivial modifications for the case of fields. An immediate consequence of the definition is that every principal ideal domain (PID) is a Dedekind domain. In fact a Dedekind domain is a unique factorization domain (UFD) if and only if it is a PID. The pre ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Class Group
In mathematics, the ideal class group (or class group) of an algebraic number field K is the quotient group J_K/P_K where J_K is the group of fractional ideals of the ring of integers of K, and P_K is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of K. The order of the group, which is finite, is called the class number of K. The theory extends to Dedekind domains and their fields of fractions, for which the multiplicative properties are intimately tied to the structure of the class group. For example, the class group of a Dedekind domain is trivial if and only if the ring is a unique factorization domain. History and origin of the ideal class group Ideal class groups (or, rather, what were effectively ideal class groups) were studied some time before the idea of an ideal was formulated. These groups appeared in the theory of quadratic forms: in the case of binary integral quadra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ideal Class
In mathematics, the ideal class group (or class group) of an algebraic number field K is the quotient group J_K/P_K where J_K is the group of fractional ideals of the ring of integers of K, and P_K is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of K. The order of the group, which is finite, is called the class number of K. The theory extends to Dedekind domains and their fields of fractions, for which the multiplicative properties are intimately tied to the structure of the class group. For example, the class group of a Dedekind domain is trivial if and only if the ring is a unique factorization domain. History and origin of the ideal class group Ideal class groups (or, rather, what were effectively ideal class groups) were studied some time before the idea of an ideal was formulated. These groups appeared in the theory of quadratic forms: in the case of binary integral quadratic form ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |