Derived Algebraic Geometry
Derived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras (over \mathbb), simplicial commutative rings or E_-ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness (e.g., Tor) of the structure sheaf. Grothendieck's scheme theory allows the structure sheaf to carry nilpotent elements. Derived algebraic geometry can be thought of as an extension of this idea, and provides natural settings for intersection theory (or motivic homotopy theory) of singular algebraic varieties and cotangent complexes in deformation theory (cf. J. Francis), among the other applications. Introduction Basic objects of study in the field are derived schemes and derived stacks. The oft-cited motivation is Serre's intersection formula. In the usual formulation, the formula involves the Tor functor and thus, unless ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects. The fundamental objects of study in algebraic geometry are algebraic variety, algebraic varieties, which are geometric manifestations of solution set, solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are line (geometry), lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscate of Bernoulli, lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular point of a curve, singular p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Intersection Number
In mathematics, and especially in algebraic geometry, the intersection number generalizes the intuitive notion of counting the number of times two curves intersect to higher dimensions, multiple (more than 2) curves, and accounting properly for tangent, tangency. One needs a definition of intersection number in order to state results like Bézout's theorem. The intersection number is obvious in certain cases, such as the intersection of the ''x''- and ''y''-axes in a plane, which should be one. The complexity enters when calculating intersections at points of tangency, and intersections which are not just points, but have higher dimension. For example, if a plane is tangent to a surface along a line, the intersection number along the line should be at least two. These questions are discussed systematically in intersection theory. Definition for Riemann surfaces Let ''X'' be a Riemann surface. Then the intersection number of two closed curves on ''X'' has a simple definition in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Weibel's Conjecture
In mathematics, Weibel's conjecture gives a criterion for vanishing of negative algebraic K-theory groups. The conjecture was proposed by and proven in full generality by using methods from derived algebraic geometry. Previously partial cases had been proven by , , , , , and . Statement of the conjecture Weibel's conjecture asserts that for a Noetherian scheme ''X'' of finite Krull dimension In commutative algebra, the Krull dimension of a commutative ring ''R'', named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally ... ''d'', the ''K''-groups vanish in degrees < −''d'': : and asserts moreover a homotopy invariance property for negative ''K''-groups : |
|
Eilenberg–MacLane Space
In mathematics, specifically algebraic topology, an Eilenberg–MacLane spaceSaunders Mac Lane originally spelt his name "MacLane" (without a space), and co-published the papers establishing the notion of Eilenberg–MacLane spaces under this name. (See e.g. ) In this context it is therefore conventional to write the name without a space. is a topological space with a single nontrivial homotopy group. Let ''G'' be a group and ''n'' a positive integer. A connected topological space ''X'' is called an Eilenberg–MacLane space of type K(G,n), if it has ''n''-th homotopy group \pi_n(X) isomorphic to ''G'' and all other homotopy groups trivial. Assuming that ''G'' is abelian in the case that n > 1, Eilenberg–MacLane spaces of type K(G,n) always exist, and are all weak homotopy equivalent. Thus, one may consider K(G,n) as referring to a weak homotopy equivalence class of spaces. It is common to refer to any representative as "a K(G,n)" or as "a model of K(G,n)". Moreover, it is comm ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homotopy Hypothesis
In category theory, a branch of mathematics, Grothendieck's homotopy hypothesis states, homotopy theory speaking, that the ∞-groupoids are space (mathematics), spaces. One version of the hypothesis was claimed to be proved in the 1991 paper by Mikhail Kapranov, Kapranov and Vladimir Voevodsky, Voevodsky. Their proof turned out to be flawed and their result in the form interpreted by Carlos Simpson is now known as the Simpson conjecture. In higher category theory, one considers a space-valued presheaf instead of a presheaf (category theory), set-valued presheaf in ordinary category theory. In view of homotopy hypothesis, a space here can be taken to an ∞-groupoid. Formulations A precise formulation of the hypothesis very strongly depends on the definition of an ∞-groupoid. One definition is that, mimicking the ordinary category case, an ∞-groupoid is an ∞-category in which each morphism is invertible or equivalently its homotopy category of an ∞-category, homotopy cat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Higher Stack
In mathematics, especially algebraic geometry and algebraic topology, a higher stack is a higher category generalization of a stack (a category-valued sheaf). The notion goes back to Grothendieck’s ''Pursuing Stacks ''Pursuing Stacks'' () is an influential 1983 mathematical manuscript by Alexander Grothendieck. It consists of a 12-page letter to Daniel Quillen followed by about 600 pages of research notes. The topic of the work is a generalized homotopy the ...''. Toën suggests the following principle:Bertrand Toën, Higher and Derived Stacks: A Global Overview, arXiv:math /0604504 Sometimes a derived stack (or a spectral stack) is defined as a higher stack of some sort. References *Carlos Simpson, Algebraic (geometric) n-stacks, 1996, arXiv:alg-geom/9609014. *André Hirschowitz, Carlos Simpson, Descente pour les n-champs (Descent for n-stacks), 1998, arXiv:math/9807049. * Further reading * https://ncatlab.org/nlab/show/higher+stack * David Carchedia, On the étale ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abelian Category
In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of abelian groups, . Abelian categories are very ''stable'' categories; for example they are regular and they satisfy the snake lemma. The class of abelian categories is closed under several categorical constructions, for example, the category of chain complexes of an abelian category, or the category of functors from a small category to an abelian category are abelian as well. These stability properties make them inevitable in homological algebra and beyond; the theory has major applications in algebraic geometry, cohomology and pure category theory. Mac Lane says Alexander Grothendieck defined the abelian category, but there is a reference that says Eilenberg's disciple, Buchsbaum, proposed the concept in his PhD thesis, and Groth ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stable ∞-category
In category theory, a branch of mathematics, a stable ∞-category is an ∞-category such that *(i) It has a zero object. *(ii) Every morphism in it admits a fiber and cofiber. *(iii) A triangle in it is a fiber sequence if and only if it is a cofiber sequence. The homotopy category of a stable ∞-category is triangulated. A stable ∞-category admits finite limits and colimits. Examples: the derived category of an abelian category and the ∞-category of spectra are both stable. A stabilization of an ∞-category ''C'' having finite limits and base point is a functor from the stable ∞-category ''S'' to ''C''. It preserves limit. The objects in the image have the structure of infinite loop spaces; whence, the notion is a generalization of the corresponding notion ( stabilization (topology)) in classical algebraic topology. By definition, the t-structure of a stable ∞-category is the t-structure of its homotopy category. Let ''C'' be a stable ∞-category with a t-struc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Triangulated Category
In mathematics, a triangulated category is a category with the additional structure of a "translation functor" and a class of "exact triangles". Prominent examples are the derived category of an abelian category, as well as the stable homotopy category. The exact triangles generalize the short exact sequences in an abelian category, as well as fiber sequences and cofiber sequences in topology. Much of homological algebra is clarified and extended by the language of triangulated categories, an important example being the theory of sheaf cohomology. In the 1960s, a typical use of triangulated categories was to extend properties of sheaves on a space ''X'' to complexes of sheaves, viewed as objects of the derived category of sheaves on ''X''. More recently, triangulated categories have become objects of interest in their own right. Many equivalences between triangulated categories of different origins have been proved or conjectured. For example, the homological mirror symmetry c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quasi-coherent Sheaf
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information. Coherent sheaves can be seen as a generalization of vector bundles. Unlike vector bundles, they form an abelian category, and so they are closed under operations such as taking kernels, images, and cokernels. The quasi-coherent sheaves are a generalization of coherent sheaves and include the locally free sheaves of infinite rank. Coherent sheaf cohomology is a powerful technique, in particular for studying the sections of a given coherent sheaf. Definitions A quasi-coherent sheaf on a ringed space (X, \mathcal O_X) is a sheaf \mathcal F of \mathcal O_X- modules that has a local presentation, that is, every point in X has an open neighborhood U in which there is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
∞-category
In mathematics, more specifically category theory, a quasi-category (also called quasicategory, weak Kan complex, inner Kan complex, infinity category, ∞-category, Boardman complex, quategory) is a generalization of the notion of a Category (mathematics), category. The study of such generalizations is known as higher category theory. Overview Quasi-categories were introduced by . André Joyal has much advanced the study of quasi-categories showing that most of the usual basic category theory and some of the advanced notions and theorems have their analogues for quasi-categories. An elaborate treatise of the theory of quasi-categories has been expounded by . Quasi-categories are certain simplicial sets. Like ordinary categories, they contain objects (the 0-simplices of the simplicial set) and morphisms between these objects (1-simplices). But unlike categories, the composition of two morphisms need not be uniquely defined. All the morphisms that can serve as composition of tw ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Derived Category
In mathematics, the derived category ''D''(''A'') of an abelian category ''A'' is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on ''A''. The construction proceeds on the basis that the objects of ''D''(''A'') should be chain complexes in ''A'', with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated spectral sequences. The development of the derived category, by Alexander Grothendieck and his student Jean-Louis Verdier shortly after 1960, now appears as one terminal point in the explosive development of homological algebra in the 1950s, a decade in which it had ma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |