Dependency Relation
In computer science, in particular in concurrency theory, a dependency relation is a binary relation on a finite domain \Sigma, symmetric, and reflexive; i.e. a finite tolerance relation. That is, it is a finite set of ordered pairs D, such that * If (a,b)\in D then (b,a) \in D (symmetric) * If a \in \Sigma, then (a,a) \in D (reflexive) In general, dependency relations are not transitive; thus, they generalize the notion of an equivalence relation by discarding transitivity. \Sigma is also called the alphabet on which D is defined. The independency induced by D is the binary relation I :I = (\Sigma \times \Sigma) \setminus D That is, the independency is the set of all ordered pairs that are not in D. The independency relation is symmetric and irreflexive. Conversely, given any symmetric and irreflexive relation I on a finite alphabet, the relation :D = (\Sigma \times \Sigma) \setminus I is a dependency relation. The pair (\Sigma, D) is called the concurrent alphabet ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Dependence Relation
In mathematics, a dependence relation is a binary relation which generalizes the relation of linear dependence. Let X be a set (mathematics), set. A (binary) relation \triangleleft between an element a of X and a subset S of X is called a ''dependence relation'', written a \triangleleft S, if it satisfies the following properties: # if a \in S, then a \triangleleft S; # if a \triangleleft S, then there is a finite set, finite subset S_0 of S, such that a \triangleleft S_0; # if T is a subset of X such that b \in S implies b \triangleleft T, then a \triangleleft S implies a \triangleleft T; # if a \triangleleft S but a \ntriangleleft S-\lbrace b \rbrace for some b \in S, then b \triangleleft (S-\lbrace b \rbrace)\cup\lbrace a \rbrace. Given a ''dependence relation'' \triangleleft on X, a subset S of X is said to be ''independent'' if a \ntriangleleft S - \lbrace a \rbrace for all a \in S. If S \subseteq T, then S is said to ''span'' T if t \triangleleft S for every t \in T. S ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Equivalence Relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equality. Any number a is equal to itself (reflexive). If a = b, then b = a (symmetric). If a = b and b = c, then a = c (transitive). Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class. Notation Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation R; the most common are "a \sim b" and "", which are used when R is implicit, and variations of "a \sim_R b", "", or "" to specify R explicitly. Non-equivalence may be written "" or "a \not\equiv b". Definitions A binary relation \,\si ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Trace Theory
Trace may refer to: Arts and entertainment Music * ''Trace'' (Son Volt album), 1995 * ''Trace'' (Died Pretty album), 1993 * Trace (band), a Dutch progressive rock band * ''The Trace'' (album), by Nell Other uses in arts and entertainment * ''Trace'' (magazine), British hip-hop magazine * ''Trace'' (manhwa), a Korean internet cartoon * ''Trace'' (manga), a Japanese manga series by Kei Koga * ''Trace'' (novel), a novel by Patricia Cornwell * ''The Trace'' (film), a 1994 Turkish film * ''The Trace'' (video game), 2015 video game * ''Sama'' (film), alternate title ''The Trace'', a 1988 Tunisian film * Trace, a fictional character in the game '' Metroid Prime Hunters'' * Trace, the protagonist of '' Axiom Verge'' * Trace, another name for Portgas D. Ace, a fictional character in the manga ''One Piece'' * Trace, the main brand for a number of music channels such as Trace Urban Language * Trace (deconstruction), a concept in Derridian deconstruction * Trace (linguistics), ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Trace Monoid
In computer science, a trace is an equivalence class of strings, wherein certain letters in the string are allowed to commute, but others are not. Traces generalize the concept of strings by relaxing the requirement for all the letters to have a definite order, instead allowing for indefinite orderings in which certain reshufflings could take place. In an opposite way, traces generalize the concept of sets with multiplicities by allowing for specifying some incomplete ordering of the letters rather than requiring complete equivalence under all reorderings. The trace monoid or free partially commutative monoid is a monoid of traces. Traces were introduced by Pierre Cartier and Dominique Foata in 1969 to give a combinatorial proof of MacMahon's master theorem. Traces are used in theories of concurrent computation, where commuting letters stand for portions of a job that can execute independently of one another, while non-commuting letters stand for locks, synchronization poin ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Equivalence Class
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a and b belong to the same equivalence class if, and only if, they are equivalent. Formally, given a set S and an equivalence relation \sim on S, the of an element a in S is denoted /math> or, equivalently, to emphasize its equivalence relation \sim, and is defined as the set of all elements in S with which a is \sim-related. The definition of equivalence relations implies that the equivalence classes form a partition of S, meaning, that every element of the set belongs to exactly one equivalence class. The set of the equivalence classes is sometimes called the quotient set or the quotient space of S by \sim, and is denoted by S /. When the set S has some structure (such as a group operation or a topology) and the equivalence re ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Equivalence Closure
In mathematics, a subset of a given set is closed under an operation on the larger set if performing that operation on members of the subset always produces a member of that subset. For example, the natural numbers are closed under addition, but not under subtraction: is not a natural number, although both 1 and 2 are. Similarly, a subset is said to be closed under a ''collection'' of operations if it is closed under each of the operations individually. The closure of a subset is the result of a closure operator applied to the subset. The ''closure'' of a subset under some operations is the smallest superset that is closed under these operations. It is often called the ''span'' (for example linear span) or the ''generated set''. Definitions Let be a set equipped with one or several methods for producing elements of from other elements of . Operations and (partial) multivariate function are examples of such methods. If is a topological space, the limit of a sequence of elemen ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Free Monoid
In abstract algebra, the free monoid on a set is the monoid whose elements are all the finite sequences (or strings) of zero or more elements from that set, with string concatenation as the monoid operation and with the unique sequence of zero elements, often called the empty string and denoted by ε or λ, as the identity element. The free monoid on a set ''A'' is usually denoted ''A''∗. The free semigroup on ''A'' is the sub semigroup of ''A''∗ containing all elements except the empty string. It is usually denoted ''A''+./ref> More generally, an abstract monoid (or semigroup) ''S'' is described as free if it is isomorphic to the free monoid (or semigroup) on some set. As the name implies, free monoids and semigroups are those objects which satisfy the usual universal property defining free objects, in the respective categories of monoids and semigroups. It follows that every monoid (or semigroup) arises as a homomorphic image of a free monoid (or semigroup). ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Alphabet (computer Science)
In formal language theory, an alphabet, sometimes called a vocabulary, is a non-empty set of indivisible symbols/ characters/glyphs, typically thought of as representing letters, characters, digits, phonemes, or even words. The definition is used in a diverse range of fields including logic, mathematics, computer science, and linguistics. An alphabet may have any cardinality ("size") and, depending on its purpose, may be finite (e.g., the alphabet of letters "a" through "z"), countable (e.g., \), or even uncountable (e.g., \). Strings, also known as "words" or "sentences", over an alphabet are defined as a sequence of the symbols from the alphabet set. For example, the alphabet of lowercase letters "a" through "z" can be used to form English words like "iceberg" while the alphabet of both upper and lower case letters can also be used to form proper names like "Wikipedia". A common alphabet is , the binary alphabet, and a "00101111" is an example of a binary string. Infinite se ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Transitive Relation
In mathematics, a binary relation on a set (mathematics), set is transitive if, for all elements , , in , whenever relates to and to , then also relates to . Every partial order and every equivalence relation is transitive. For example, less than and equality (mathematics), equality among real numbers are both transitive: If and then ; and if and then . Definition A homogeneous relation on the set is a ''transitive relation'' if, :for all , if and , then . Or in terms of first-order logic: :\forall a,b,c \in X: (aRb \wedge bRc) \Rightarrow aRc, where is the infix notation for . Examples As a non-mathematical example, the relation "is an ancestor of" is transitive. For example, if Amy is an ancestor of Becky, and Becky is an ancestor of Carrie, then Amy is also an ancestor of Carrie. On the other hand, "is the birth mother of" is not a transitive relation, because if Alice is the birth mother of Brenda, and Brenda is the birth mother of Claire, then it does ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Computer Science
Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, applied disciplines (including the design and implementation of Computer architecture, hardware and Software engineering, software). Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and preventing security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Programming language theory considers different ways to describe computational processes, and database theory concerns the management of re ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Ordered Pair
In mathematics, an ordered pair, denoted (''a'', ''b''), is a pair of objects in which their order is significant. The ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a''), unless ''a'' = ''b''. In contrast, the '' unordered pair'', denoted , always equals the unordered pair . Ordered pairs are also called 2-tuples, or sequences (sometimes, lists in a computer science context) of length 2. Ordered pairs of scalars are sometimes called 2-dimensional vectors. (Technically, this is an abuse of terminology since an ordered pair need not be an element of a vector space.) The entries of an ordered pair can be other ordered pairs, enabling the recursive definition of ordered ''n''-tuples (ordered lists of ''n'' objects). For example, the ordered triple (''a'',''b'',''c'') can be defined as (''a'', (''b'',''c'')), i.e., as one pair nested in another. In the ordered pair (''a'', ''b''), the object ''a'' is called the ''first entry'', and the object ''b'' the ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Tolerance Relation
In universal algebra and lattice theory, a tolerance relation on an algebraic structure is a reflexive symmetric relation that is compatible with all operations of the structure. Thus a tolerance is like a congruence, except that the assumption of transitivity is dropped. On a set, an algebraic structure with empty family of operations, tolerance relations are simply reflexive symmetric relations. A set that possesses a tolerance relation can be described as a tolerance space. Tolerance relations provide a convenient general tool for studying indiscernibility/indistinguishability phenomena. The importance of those for mathematics had been first recognized by Poincaré. Definitions A tolerance relation on an algebraic structure (A,F) is usually defined to be a reflexive symmetric relation on A that is compatible with every operation in F. A tolerance relation can also be seen as a cover of A that satisfies certain conditions. The two definitions are equivalent, since for a fi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |