HOME



picture info

Decoherence
Quantum decoherence is the loss of quantum coherence. It involves generally a loss of information of a system to its environment. Quantum decoherence has been studied to understand how quantum systems convert to systems that can be explained by classical mechanics. Beginning out of attempts to extend the understanding of quantum mechanics, the theory has developed in several directions and experimental studies have confirmed some of the key issues. Quantum computing relies on quantum coherence and is one of the primary practical applications of the concept. Concept In quantum mechanics, physical systems are described by a mathematical representation called a quantum state. Probabilities for the outcomes of experiments upon a system are calculated by applying the Born rule to the quantum state describing that system. Quantum states are either ''pure'' or ''mixed''; pure states are also known as ''wavefunctions''. Assigning a pure state to a quantum system implies certain ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Collapse Of The Wave Function
In various Interpretations of quantum mechanics, interpretations of quantum mechanics, wave function collapse, also called reduction of the state vector, occurs when a wave function—initially in a quantum superposition, superposition of several eigenstates—reduces to a single eigenstate due to Fundamental interaction, interaction with the external world. This interaction is called an Observation (physics), ''observation'' and is the essence of a measurement in quantum mechanics, which connects the wave function with classical observables such as position (vector), position and momentum. Collapse is one of the two processes by which quantum systems evolve in time; the other is the continuous evolution governed by the Schrödinger equation. : In the Copenhagen interpretation, wave function collapse connects quantum to classical models, with a special Copenhagen interpretation#Role of the observer, role for the observer. By contrast, Objective-collapse theory, objective-colla ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Measurement In Quantum Mechanics
In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. A fundamental feature of quantum theory is that the predictions it makes are probabilistic. The procedure for finding a probability involves combining a quantum state, which mathematically describes a quantum system, with a mathematical representation of the measurement to be performed on that system. The formula for this calculation is known as the Born rule. For example, a quantum particle like an electron can be described by a quantum state that associates to each point in space a complex number called a probability amplitude. Applying the Born rule to these amplitudes gives the probabilities that the electron will be found in one region or another when an experiment is performed to locate it. This is the best the theory can do; it cannot say for certain where the electron will be found. The same quantum state can also be used to make a prediction of how the electro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Measurement Problem
In quantum mechanics, the measurement problem is the ''problem of definite outcomes:'' quantum systems have superpositions but quantum measurements only give one definite result. The wave function in quantum mechanics evolves deterministically according to the Schrödinger equation as a linear superposition of different states. However, actual measurements always find the physical system in a definite state. Any future evolution of the wave function is based on the state the system was discovered to be in when the measurement was made, meaning that the measurement "did something" to the system that is not obviously a consequence of Schrödinger evolution. The measurement problem is describing what that "something" is, how a superposition of many possible values becomes a single measured value. To express matters differently (paraphrasing Steven Weinberg), the Schrödinger equation determines the wave function at any later time. If observers and their measuring apparatus are t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Interpretations Of Quantum Mechanics
An interpretation of quantum mechanics is an attempt to explain how the mathematical theory of quantum mechanics might correspond to experienced reality. Quantum mechanics has held up to rigorous and extremely precise tests in an extraordinarily broad range of experiments. However, there exist a number of contending schools of thought over their interpretation. These views on interpretation differ on such fundamental questions as whether quantum mechanics is determinism, deterministic or stochastic, Principle_of_locality, local or Quantum_nonlocality, non-local, which elements of quantum mechanics can be considered real, and what the nature of measurement in quantum mechanics, measurement is, among other matters. While some variation of the Copenhagen interpretation is commonly presented in textbooks, many other interpretations have been developed. Despite nearly a century of debate and experiment, no consensus has been reached among physicists and Philosophy of physics, philosophe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Copenhagen Interpretation Of Quantum Mechanics
The Copenhagen interpretation is a collection of views about the meaning of quantum mechanics, stemming from the work of Niels Bohr, Werner Heisenberg, Max Born, and others. While "Copenhagen" refers to the Danish city, the use as an "interpretation" was apparently coined by Heisenberg during the 1950s to refer to ideas developed in the 1925–1927 period, glossing over his disagreements with Bohr. Consequently, there is no definitive historical statement of what the interpretation entails. Features common across versions of the Copenhagen interpretation include the idea that quantum mechanics is intrinsically indeterministic, with probabilities calculated using the Born rule, and the principle of complementarity, which states that objects have certain pairs of complementary properties that cannot all be observed or measured simultaneously. Moreover, the act of "observing" or "measuring" an object is irreversible, and no truth can be attributed to an object except according to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Niels Bohr
Niels Henrik David Bohr (, ; ; 7 October 1885 – 18 November 1962) was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and old quantum theory, quantum theory, for which he received the Nobel Prize in Physics in 1922. Bohr was also a philosopher and a promoter of scientific research. Bohr developed the Bohr model of the atom, in which he proposed that energy levels of electrons are discrete and that the electrons revolve in stable orbits around the atomic nucleus but can jump from one energy level (or orbit) to another. Although the Bohr model has been supplanted by other models, its underlying principles remain valid. He conceived the principle of Complementarity (physics), complementarity: that items could be separately analysed in terms of contradictory properties, like behaving as a Wave–particle duality, wave or a stream of particles. The notion of complementarity dominated Bohr's thinking in both science and philoso ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nevill Mott
Sir Nevill Francis Mott (30 September 1905 – 8 August 1996) was a British physicist who won the Nobel Prize for Physics in 1977 for his work on the electronic structure of magnetic and disordered systems, especially amorphous semiconductors. The award was shared with Philip W. Anderson and J. H. Van Vleck. The three had conducted loosely related research. Mott and Anderson clarified the reasons why magnetic or amorphous materials can sometimes be metallic and sometimes insulating. Education and early life Mott was born in Leeds to Charles Francis Mott and Lilian Mary Reynolds, a granddaughter of Sir John Richardson, and great granddaughter of Sir John Henry Pelly, 1st Baronet. Miss Reynolds was a Cambridge Mathematics Tripos graduate and at Cambridge was the best woman mathematician of her year. His parents met in the Cavendish Laboratory, when both were engaged in physics research under J.J. Thomson. Nevill grew up first in the village of Giggleswick, in the West ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Werner Heisenberg
Werner Karl Heisenberg (; ; 5 December 1901 – 1 February 1976) was a German theoretical physicist, one of the main pioneers of the theory of quantum mechanics and a principal scientist in the German nuclear program during World War II. He published his Umdeutung paper, ''Umdeutung'' paper in 1925, a major reinterpretation of old quantum theory. In the subsequent series of papers with Max Born and Pascual Jordan, during the same year, his matrix mechanics, matrix formulation of quantum mechanics was substantially elaborated. He is known for the uncertainty principle, which he published in 1927. Heisenberg was awarded the 1932 Nobel Prize in Physics "for the creation of quantum mechanics". Heisenberg also made contributions to the theories of the Fluid dynamics, hydrodynamics of turbulent flows, the atomic nucleus, ferromagnetism, cosmic rays, and subatomic particles. He introduced the concept of a wave function collapse. He was also instrumental in planning the first West Germa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

David Bohm
David Joseph Bohm (; 20 December 1917 – 27 October 1992) was an American scientist who has been described as one of the most significant Theoretical physics, theoretical physicists of the 20th centuryDavid Peat Who's Afraid of Schrödinger's Cat? The New Science Revealed: Quantum Theory, Relativity, Chaos and the New Cosmology 1997, pp. 316–317 and who contributed unorthodox ideas to quantum mechanics, quantum theory, neuropsychology and the philosophy of mind. Among his many contributions to physics is his causal and deterministic interpretation of quantum theory known as De Broglie–Bohm theory. Bohm advanced the view that quantum physics meant that the old Dualism (philosophy of mind), Cartesian model of reality—that there are two kinds of substance, the mental and the physical, that somehow interact—was too limited. To complement it, he developed a mathematical and physical theory of Implicate and explicate order, "implicate" and "explicate" order.David Bohm: ''Wh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mott Problem
The Mott problem is an iconic challenge to quantum mechanics theory: how can the prediction of spherically symmetric wave function result in linear tracks seen in a cloud chamber. The problem was first formulated in 1927 by Albert Einstein and Max Born and solved in 1929 by Nevill Francis Mott. Mott's solution notably only uses the wave equation, not wavefunction collapse, and it is considered the earliest example of what is now called decoherence theory. Spherical waves, particle tracks The problem later associated with Mott concerns a spherical wave function associated with an alpha ray emitted from the decay of a radioactive atomic nucleus. Intuitively, one might think that such a wave function should randomly ionize atoms throughout the cloud chamber, but this is not the case. The result of such a decay is always observed as linear tracks seen in Wilson's cloud chamber. The origin of the tracks given the original spherical wave predicted by theory is the problem requiring p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dover Publications
Dover Publications, also known as Dover Books, is an American book publisher founded in 1941 by Hayward and Blanche Cirker. It primarily reissues books that are out of print from their original publishers. These are often, but not always, books in the public domain. The original published editions may be scarce or historically significant. Dover republishes these books, making them available at a significantly reduced cost. Classic reprints Dover reprints classic works of literature, classical sheet music, and public-domain images from the 18th and 19th centuries. Dover also publishes an extensive collection of mathematical, scientific, and engineering texts. It often targets its reprints at a niche market, such as woodworking. Starting in 2015, the company branched out into graphic novel reprints, overseen by Dover acquisitions editor and former comics writer and editor Drew Ford. Most Dover reprints are photo facsimiles of the originals, retaining the original pagination ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]