HOME





Damerau–Levenshtein Distance
In information theory and computer science, the Damerau–Levenshtein distance (named after Frederick J. Damerau and Vladimir I. Levenshtein.) is a string metric for measuring the edit distance between two sequences. Informally, the Damerau–Levenshtein distance between two words is the minimum number of operations (consisting of insertions, deletions or substitutions of a single character, or transposition of two adjacent characters) required to change one word into the other. The Damerau–Levenshtein distance differs from the classical Levenshtein distance by including transpositions among its allowable operations in addition to the three classical single-character edit operations (insertions, deletions and substitutions). In his seminal paper, Damerau stated that in an investigation of spelling errors for an information-retrieval system, more than 80% were a result of a single error of one of the four types. Damerau's paper considered only misspellings that could be correc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Information Theory
Information theory is the mathematical study of the quantification (science), quantification, Data storage, storage, and telecommunications, communication of information. The field was established and formalized by Claude Shannon in the 1940s, though early contributions were made in the 1920s through the works of Harry Nyquist and Ralph Hartley. It is at the intersection of electronic engineering, mathematics, statistics, computer science, Neuroscience, neurobiology, physics, and electrical engineering. A key measure in information theory is information entropy, entropy. Entropy quantifies the amount of uncertainty involved in the value of a random variable or the outcome of a random process. For example, identifying the outcome of a Fair coin, fair coin flip (which has two equally likely outcomes) provides less information (lower entropy, less uncertainty) than identifying the outcome from a roll of a dice, die (which has six equally likely outcomes). Some other important measu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


String Metrics
In mathematics and computer science, a string metric (also known as a string similarity metric or string distance function) is a metric that measures distance ("inverse similarity") between two text strings for approximate string matching or comparison and in fuzzy string searching. A requirement for a string ''metric'' (e.g. in contrast to string matching) is fulfillment of the triangle inequality. For example, the strings "Sam" and "Samuel" can be considered to be close. A string metric provides a number indicating an algorithm-specific indication of distance. The most widely known string metric is a rudimentary one called the Levenshtein distance (also known as edit distance). It operates between two input strings, returning a number equivalent to the number of substitutions and deletions needed in order to transform one input string into another. Simplistic string metrics such as Levenshtein distance have expanded to include phonetic, token, grammatical and character-based ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ispell
Ispell is a spelling checker for Unix that supports most Western languages. It offers several interfaces, including a programmatic interface for use by editors such as Emacs. Unlike GNU Aspell, ispell will only suggest corrections that are based on a Damerau–Levenshtein distance of 1; it will not attempt to guess more distant corrections based on English pronunciation rules. Ispell has a very long history that can be traced back to a program that was originally written in 1971 in PDP-10 Assembly language by R. E. Gorin, and later ported to the C (programming language), C programming language and expanded by many others. It is currently maintained by Geoff Kuenning. The generalized affix description system introduced by ispell has since been imitated by other spelling checkers such as MySpell. Like most computerized spelling checkers, ispell works by reading an input file word by word, stopping when a word is not found in its dictionary. Ispell then attempts to generate a list ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Smith–Waterman Algorithm
The Smith–Waterman algorithm performs local sequence alignment; that is, for determining similar regions between two strings of nucleic acid sequences or protein sequences. Instead of looking at the entire sequence, the Smith–Waterman algorithm compares segments of all possible lengths and optimizes the similarity measure. The algorithm was first proposed by Temple F. Smith and Michael S. Waterman in 1981. Like the Needleman–Wunsch algorithm, of which it is a variation, Smith–Waterman is a dynamic programming algorithm. As such, it has the desirable property that it is guaranteed to find the optimal local alignment with respect to the scoring system being used (which includes the substitution matrix and the gap-scoring scheme). The main difference to the Needleman–Wunsch algorithm is that negative scoring matrix cells are set to zero. Traceback procedure starts at the highest scoring matrix cell and proceeds until a cell with score zero is encountered, yielding the h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Needleman–Wunsch Algorithm
The Needleman–Wunsch algorithm is an algorithm used in bioinformatics to align protein or nucleotide sequences. It was one of the first applications of dynamic programming to compare biological sequences. The algorithm was developed by Saul B. Needleman and Christian D. Wunsch and published in 1970. The algorithm essentially divides a large problem (e.g. the full sequence) into a series of smaller problems, and it uses the solutions to the smaller problems to find an optimal solution to the larger problem. It is also sometimes referred to as the optimal matching algorithm and the global alignment technique. The Needleman–Wunsch algorithm is still widely used for optimal global alignment, particularly when the quality of the global alignment is of the utmost importance. The algorithm assigns a score to every possible alignment, and the purpose of the algorithm is to find all possible alignments having the highest score. Introduction This algorithm can be used for any two ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metric Tree
A metric tree is any tree data structure specialized to index data in metric spaces. Metric trees exploit properties of metric spaces such as the triangle inequality to make accesses to the data more efficient. Examples include the M-tree, vp-trees, cover trees, MVP trees, and BK-trees. Multidimensional search Most algorithms and data structures for searching a dataset are based on the classical binary search algorithm, and generalizations such as the k-d tree or range tree work by interleaving the binary search algorithm over the separate coordinates and treating each spatial coordinate as an independent search constraint. These data structures are well-suited for range query problems asking for every point (x,y) that satisfies \mbox_x \leq x \leq \mbox_x and \mbox_y \leq y \leq \mbox_y. A limitation of these multidimensional search structures is that they are only defined for searching over objects that can be treated as vectors. They are not applicable for the more gen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Natural Language Processing
Natural language processing (NLP) is a subfield of computer science and especially artificial intelligence. It is primarily concerned with providing computers with the ability to process data encoded in natural language and is thus closely related to information retrieval, knowledge representation and computational linguistics, a subfield of linguistics. Major tasks in natural language processing are speech recognition, text classification, natural-language understanding, natural language understanding, and natural language generation. History Natural language processing has its roots in the 1950s. Already in 1950, Alan Turing published an article titled "Computing Machinery and Intelligence" which proposed what is now called the Turing test as a criterion of intelligence, though at the time that was not articulated as a problem separate from artificial intelligence. The proposed test includes a task that involves the automated interpretation and generation of natural language ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bitap Algorithm
The bitap algorithm (also known as the shift-or, shift-and or Baeza-Yates–Gonnet algorithm) is an approximate string matching algorithm. The algorithm tells whether a given text contains a substring which is "approximately equal" to a given pattern, where approximate equality is defined in terms of Levenshtein distance if the substring and pattern are within a given distance ''k'' of each other, then the algorithm considers them equal. The algorithm begins by precomputing a set of bitmasks containing one bit for each element of the pattern. Then it is able to do most of the work with bitwise operations, which are extremely fast. The bitap algorithm is perhaps best known as one of the underlying algorithms of the Unix utility agrep, written by Udi Manber, Sun Wu, and Burra Gopal. Manber and Wu's original paper gives extensions of the algorithm to deal with fuzzy matching of general regular expressions. Due to the data structures required by the algorithm, it performs best on p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pseudocode
In computer science, pseudocode is a description of the steps in an algorithm using a mix of conventions of programming languages (like assignment operator, conditional operator, loop) with informal, usually self-explanatory, notation of actions and conditions. Although pseudocode shares features with regular programming languages, it is intended for human reading rather than machine control. Pseudocode typically omits details that are essential for machine implementation of the algorithm, meaning that pseudocode can only be verified by hand. The programming language is augmented with natural language description details, where convenient, or with compact mathematical notation. The reasons for using pseudocode are that it is easier for people to understand than conventional programming language code and that it is an efficient and environment-independent description of the key principles of an algorithm. It is commonly used in textbooks and scientific publications to document ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wagner–Fischer Algorithm
In computer science, the Wagner–Fischer algorithm is a dynamic programming algorithm that computes the edit distance between two strings of characters. History The Wagner–Fischer algorithm has a history of multiple invention. Navarro lists the following inventors of it, with date of publication, and acknowledges that the list is incomplete: * Vintsyuk, 1968 * Needleman and Wunsch, 1970 * Sankoff, 1972 * Sellers, 1974 * Wagner and Fischer, 1974 * Lowrance and Wagner, 1975 * P. Pletyuhin, 1996 Calculating distance The Wagner–Fischer algorithm computes edit distance based on the observation that if we reserve a matrix to hold the edit distances between all prefixes of the first string and all prefixes of the second, then we can compute the values in the matrix by flood filling the matrix, and thus find the distance between the two full strings as the last value computed. A straightforward implementation, as pseudocode for a function ''Distance'' that takes two strings, '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, applied disciplines (including the design and implementation of Computer architecture, hardware and Software engineering, software). Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and preventing security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Programming language theory considers different ways to describe computational processes, and database theory concerns the management of re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]