X86 Architecture
   HOME



picture info

X86 Architecture
x86 (also known as 80x86 or the 8086 family) is a family of complex instruction set computer (CISC) instruction set architectures initially developed by Intel, based on the 8086 microprocessor and its 8-bit-external-bus variant, the 8088. The 8086 was introduced in 1978 as a fully 16-bit extension of 8-bit Intel's 8080 microprocessor, with memory segmentation as a solution for addressing more memory than can be covered by a plain 16-bit address. The term "x86" came into being because the names of several successors to Intel's 8086 processor end in "86", including the 80186, 80286, 80386 and 80486. Colloquially, their names were "186", "286", "386" and "486". The term is not synonymous with IBM PC compatibility, as this implies a multitude of other computer hardware. Embedded systems and general-purpose computers used x86 chips before the PC-compatible market started, some of them before the IBM PC (1981) debut. , most desktop and laptop computers sold are based o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intel
Intel Corporation is an American multinational corporation and technology company headquartered in Santa Clara, California, and Delaware General Corporation Law, incorporated in Delaware. Intel designs, manufactures, and sells computer components such as central processing units (CPUs) and related products for business and consumer markets. It is one of the world's List of largest semiconductor chip manufacturers, largest semiconductor chip manufacturers by revenue, and ranked in the Fortune 500, ''Fortune'' 500 list of the List of largest companies in the United States by revenue, largest United States corporations by revenue for nearly a decade, from 2007 to 2016 Fiscal year, fiscal years, until it was removed from the ranking in 2018. In 2020, it was reinstated and ranked 45th, being the List of Fortune 500 computer software and information companies, 7th-largest technology company in the ranking. It was one of the first companies listed on Nasdaq. Intel supplies List of I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

X86-64
x86-64 (also known as x64, x86_64, AMD64, and Intel 64) is a 64-bit extension of the x86 instruction set architecture, instruction set. It was announced in 1999 and first available in the AMD Opteron family in 2003. It introduces two new operating modes: 64-bit mode and compatibility mode, along with a new four-level paging mechanism. In 64-bit mode, x86-64 supports significantly larger amounts of virtual memory and physical memory compared to its 32-bit computing, 32-bit predecessors, allowing programs to utilize more memory for data storage. The architecture expands the number of general-purpose registers from 8 to 16, all fully general-purpose, and extends their width to 64 bits. Floating-point arithmetic is supported through mandatory SSE2 instructions in 64-bit mode. While the older x87 FPU and MMX registers are still available, they are generally superseded by a set of sixteen 128-bit Processor register, vector registers (XMM registers). Each of these vector registers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




CLMUL Instruction Set
Carry-less Multiplication (CLMUL) is an extension to the x86 instruction set used by microprocessors from Intel and AMD which was proposed by Intel in March 2008 and made available in the Intel Westmere processors announced in early 2010. Mathematically, the instruction implements multiplication of polynomials over the finite field GF(2) where the bitstring a_0a_1\ldots a_ represents the polynomial a_0 + a_1X + a_2X^2 + \cdots + a_X^. The CLMUL instruction also allows a more efficient implementation of the closely related multiplication of larger finite fields GF(2''k'') than the traditional instruction set. One use of these instructions is to improve the speed of applications doing block cipher encryption in Galois/Counter Mode, which depends on finite field GF(2''k'') multiplication. Another application is the fast calculation of CRC values, including those used to implement the LZ77 sliding window DEFLATE algorithm in zlib and pngcrush. ARMv8 also has a version of CLMU ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


AES-NI
An Advanced Encryption Standard instruction set (AES instruction set) is a set of instructions that are specifically designed to perform AES encryption and decryption operations efficiently. These instructions are typically found in modern processors and can greatly accelerate AES operations compared to software implementations. An AES instruction set includes instructions for key expansion, encryption, and decryption using various key sizes (128-bit, 192-bit, and 256-bit). The instruction set is often implemented as a set of instructions that can perform a single round of AES along with a special version for the last round which has a slightly different method. When AES is implemented as an instruction set instead of as software, it can have improved security, as its side channel attack surface is reduced. x86 architecture processors AES-NI (or the Intel Advanced Encryption Standard New Instructions; AES-NI) was the first major implementation. AES-NI is an extension to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SSE4
SSE4 (Streaming SIMD Extensions 4) is a SIMD CPU instruction set used in the Intel Core microarchitecture and AMD K10 (K8L). It was announced on September 27, 2006, at the Fall 2006 Intel Developer Forum, with vague details in a white paper;Intel Streaming SIMD Extensions 4 (SSE4) Instruction Set Innovation
, Intel.
more precise details of 47 instructions became available at the Spring 2007 Intel Developer Forum in , in the presentation. SSE4 extended the SSE3 instruction set which was released in early 2004. All software using previous Intel SIMD instructio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SSSE3
Supplemental Streaming SIMD Extensions 3 (SSSE3 or SSE3S) is a SIMD instruction set created by Intel and is the fourth iteration of the SSE technology. History SSSE3 was first introduced with Intel processors based on the Core microarchitecture on June 26, 2006 with the "Woodcrest" Xeons. SSSE3 has been referred to by the codenames Tejas New Instructions (TNI) or Merom New Instructions (MNI) for the first processor designs intended to support it. SSSE3 has enhanced for HD audio/video decoding/encoding, for example AAC. Functionality SSSE3 contains 16 new discrete instructions. Each instruction can act on 64-bit MMX or 128-bit XMM registers. Therefore, Intel's materials refer to 32 new instructions. They include: * Twelve instructions that perform horizontal addition or subtraction operations. * Six instructions that evaluate absolute values. * Two instructions that perform multiply-and-add operations and speed up the evaluation of dot products. * Two instructions tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




SSE3
SSE3, Streaming SIMD Extensions 3, also known by its Intel code name Prescott New Instructions (PNI), is the third iteration of the SSE instruction set for the IA-32 (x86) architecture. Intel introduced SSE3 in early 2004 with the Prescott revision of their Pentium 4 CPU. In April 2005, AMD introduced a subset of SSE3 in revision E (Venice and San Diego) of their Athlon 64 CPUs. The earlier SIMD instruction sets on the x86 platform, from oldest to newest, are MMX, 3DNow! (developed by AMD, no longer supported on newer CPUs), SSE, and SSE2. SSE3 contains 13 new instructions over SSE2. Changes The most notable change is the capability to work horizontally in a register, as opposed to the more or less strictly vertical operation of all previous SSE instructions. More specifically, instructions to add and subtract the multiple values stored within a single register have been added. These instructions can be used to speed up the implementation of a number of DSP and 3D op ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simultaneous Multithreading
Simultaneous multithreading (SMT) is a technique for improving the overall efficiency of superscalar CPUs with hardware multithreading. SMT permits multiple independent threads of execution to better use the resources provided by modern processor architectures. Details The term ''multithreading'' is ambiguous, because not only can multiple threads be executed simultaneously on one CPU core, but also multiple tasks (with different page tables, different task state segments, different protection rings, different I/O permissions, etc.). Although running on the same core, they are completely separated from each other. Multithreading is similar in concept to preemptive multitasking but is implemented at the thread level of execution in modern superscalar processors. Simultaneous multithreading (SMT) is one of the two main implementations of multithreading, the other form being temporal multithreading (also known as super-threading). In temporal multithreading, only one thre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


NX Bit
The NX bit (no-execute bit) is a processor feature that separates areas of a virtual address space (the memory layout a program uses) into sections for storing data or program instructions. An operating system supporting the NX bit can mark certain areas of the virtual address space as non-executable, preventing the processor from running any code stored there. This technique, known as executable space protection or Write XOR Execute, protects computers from malicious software that attempts to insert harmful code into another program’s data storage area and execute it, such as in a buffer overflow attack. The term "NX bit" was introduced by Advanced Micro Devices (AMD) as a marketing term. Intel markets this feature as the XD bit (execute disable), while the MIPS architecture refers to it as the XI bit (execute inhibit). In the ARM architecture, introduced in ARMv6, it is known as XN (execute never). The term NX bit is often used broadly to describe similar executable space p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SSE2
SSE2 (Streaming SIMD Extensions 2) is one of the Intel SIMD (Single Instruction, Multiple Data) processor supplementary instruction sets introduced by Intel with the initial version of the Pentium 4 in 2000. SSE2 instructions allow the use of XMM (SIMD) registers on x86 instruction set architecture processors. These registers can load up to 128 bits of data and perform instructions, such as vector addition and multiplication, simultaneously. SSE2 introduced double-precision floating point instructions in addition to the single-precision floating point and integer instructions found in SSE. SSE2 extends earlier SSE instruction set by adding 144 new instructions to the previous 70 instructions. SSE2 intends to fully replace MMX, a SIMD instruction set found on IA-32 architecture processors. Competing chip-maker AMD added support for SSE2 with the introduction of their Opteron and Athlon 64 ranges of AMD64 64-bit CPUs in 2003. SSE2 was extended to create SSE3 in 2004, and e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Advanced Configuration And Power Interface
Advanced Configuration and Power Interface (ACPI) is an open standard that operating systems can use to discover and configure computer hardware components, to perform power management (e.g. putting unused hardware components to sleep), auto configuration (e.g. Plug and Play and hot swapping), and status monitoring. It was first released in December 1996. ACPI aims to replace Advanced Power Management (APM), the MultiProcessor Specification, and the Plug and Play BIOS (PnP) Specification. ACPI brings power management under the control of the operating system, as opposed to the previous BIOS-centric system that relied on platform-specific firmware to determine power management and configuration policies. The specification is central to the Operating System-directed configuration and Power Management (OSPM) system. ACPI defines hardware abstraction interfaces between the device's firmware (e.g. BIOS, UEFI), the computer hardware components, and the operating systems. Internally, AC ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Machine Check Architecture
In computing, Machine Check Architecture (MCA) is an Intel and AMD mechanism in which the CPU reports hardware errors to the operating system. Intel's P6 and Pentium 4 family processors, AMD's K7 and K8 family processors, as well as the Itanium architecture implement a machine check architecture that provides a mechanism for detecting and reporting hardware (machine) errors, such as: system bus errors, ECC errors, parity errors, cache errors, and translation lookaside buffer errors. It consists of a set of model-specific registers ( MSRs) that are used to set up machine checking and additional banks of MSRs used for recording errors that are detected. See also * Machine-check exception (MCE) * High availability (HA) * Reliability, availability and serviceability Reliability, availability and serviceability (RAS), also known as reliability, availability, and maintainability (RAM), is a computer hardware engineering term involving reliability engineering, high availability, an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]