Discrepancy Theory
   HOME





Discrepancy Theory
In mathematics, discrepancy theory describes the deviation of a situation from the state one would like it to be in. It is also called the theory of irregularities of distribution. This refers to the theme of ''classical'' discrepancy theory, namely distributing points in some space such that they are evenly distributed with respect to some (mostly geometrically defined) subsets. The discrepancy (irregularity) measures how far a given distribution deviates from an ideal one. Discrepancy theory can be described as the study of inevitable irregularities of distributions, in measure-theoretic and combinatorial settings. Just as Ramsey theory elucidates the impossibility of total disorder, discrepancy theory studies the deviations from total uniformity. A significant event in the history of discrepancy theory was the 1916 paper of Weyl on the uniform distribution of sequences in the unit interval. Theorems Discrepancy theory is based on the following classic theorems: * Geometri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Measure Theory
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude (mathematics), magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integral, integration theory, and can be generalized to assume signed measure, negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to Ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile B ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heilbronn Triangle Problem
In discrete geometry and discrepancy theory, the Heilbronn triangle problem is a problem of placing points in the plane, avoiding triangles of small area. It is named after Hans Heilbronn, who conjectured that, no matter how points are placed in a given area, the smallest triangle area will be at most Proportionality (mathematics)#Inverse proportionality, inversely proportional to the Square (algebra), square of the number of points. His conjecture was proven false, but the Asymptotic analysis, asymptotic growth rate of the minimum triangle area remains unknown. Definition The Heilbronn triangle problem concerns the placement of n points within a shape in the plane, such as the unit square or the unit disk, for a given Each triple of points form the three vertices of a triangle, and among these triangles, the problem concerns the smallest triangle, as measured by area. Different placements of points will have different smallest triangles, and the problem asks: how should n point ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE