HOME





Critical Exponent Of A Word
In mathematics and computer science, the critical exponent of a finite or infinite sequence of symbols over a finite alphabet describes the largest number of times a contiguous subsequence can be repeated. For example, the critical exponent of "Mississippi" is 7/3, as it contains the string "ississi", which is of length 7 and period 3. If ''w'' is an infinite word over the alphabet ''A'' and ''x'' is a finite word over ''A'', then ''x'' is said to occur in ''w'' with exponent α, for positive real α, if there is a factor ''y'' of ''w'' with ''y'' = ''x''''a''''x''0 where ''x''0 is a prefix of ''x'', ''a'' is the integer part of α, and the length , ''y'', = α , ''x'', : we say that ''y'' is an ''α-power''. The word ''w'' is ''α-power-free'' if it contains no factors which are β-powers for any β ≥ α. p.281 The ''critical exponent'' for ''w'' is the supremum of the α for which ''w'' has α-powers,Berstel et al (2009) p.126 or equivalently the infimum of the α for whi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Supremum
In mathematics, the infimum (abbreviated inf; plural infima) of a subset S of a partially ordered set P is a greatest element in P that is less than or equal to each element of S, if such an element exists. Consequently, the term ''greatest lower bound'' (abbreviated as ) is also commonly used. The supremum (abbreviated sup; plural suprema) of a subset S of a partially ordered set P is the least element in P that is greater than or equal to each element of S, if such an element exists. Consequently, the supremum is also referred to as the ''least upper bound'' (or ). The infimum is in a precise sense dual to the concept of a supremum. Infima and suprema of real numbers are common special cases that are important in analysis, and especially in Lebesgue integration. However, the general definitions remain valid in the more abstract setting of order theory where arbitrary partially ordered sets are considered. The concepts of infimum and supremum are close to minimum and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Infimum
In mathematics, the infimum (abbreviated inf; plural infima) of a subset S of a partially ordered set P is a greatest element in P that is less than or equal to each element of S, if such an element exists. Consequently, the term ''greatest lower bound'' (abbreviated as ) is also commonly used. The supremum (abbreviated sup; plural suprema) of a subset S of a partially ordered set P is the least element in P that is greater than or equal to each element of S, if such an element exists. Consequently, the supremum is also referred to as the ''least upper bound'' (or ). The infimum is in a precise sense dual to the concept of a supremum. Infima and suprema of real numbers are common special cases that are important in analysis, and especially in Lebesgue integration. However, the general definitions remain valid in the more abstract setting of order theory where arbitrary partially ordered sets are considered. The concepts of infimum and supremum are close to minimum an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fibonacci Word
A Fibonacci word is a specific sequence of binary digits (or symbols from any two-letter alphabet). The Fibonacci word is formed by repeated concatenation in the same way that the Fibonacci numbers are formed by repeated addition. It is a paradigmatic example of a Sturmian word and specifically, a morphic word. The name "Fibonacci word" has also been used to refer to the members of a formal language ''L'' consisting of strings of zeros and ones with no two repeated ones. Any prefix of the specific Fibonacci word belongs to ''L'', but so do many other strings. ''L'' has a Fibonacci number of members of each possible length. Definition Let S_0 be "0" and S_1 be "01". Now S_n = S_S_ (the concatenation of the previous sequence and the one before that). The infinite Fibonacci word is the limit S_, that is, the (unique) infinite sequence that contains each S_n, for finite n, as a prefix. Enumerating items from the above definition produces: S_0    0 S_1    ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Thue–Morse Sequence
In mathematics, the Thue–Morse sequence, or Prouhet–Thue–Morse sequence, is the binary sequence (an infinite sequence of 0s and 1s) obtained by starting with 0 and successively appending the Boolean complement of the sequence obtained thus far. The first few steps of this procedure yield the strings 0 then 01, 0110, 01101001, 0110100110010110, and so on, which are prefixes of the Thue–Morse sequence. The full sequence begins: :01101001100101101001011001101001.... The sequence is named after Axel Thue and Marston Morse. Definition There are several equivalent ways of defining the Thue–Morse sequence. Direct definition To compute the ''n''th element ''tn'', write the number ''n'' in binary. If the number of ones in this binary expansion is odd then ''tn'' = 1, if even then ''tn'' = 0. For this reason John H. Conway ''et al''. called numbers ''n'' satisfying ''tn'' = 1 ''odious'' (for ''odd'') numbers and numbers for which ''tn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Morphic Word
In mathematics and computer science, a morphic word or substitutive word is an infinite sequence of symbols which is constructed from a particular class of endomorphism of a free monoid. Every automatic sequence is morphic. Definition Let ''f'' be an endomorphism of the free monoid ''A''∗ on an alphabet ''A'' with the property that there is a letter ''a'' such that ''f''(''a'') = ''as'' for a non-empty string ''s'': we say that ''f'' is prolongable at ''a''. The word : a s f(s) f(f(s)) \cdots f^(s) \cdots \ is a pure morphic or pure substitutive word. Note that it is the limit of the sequence ''a'', ''f''(''a''), ''f''(''f''(''a'')), ''f''(''f''(''f''(''a''))), ... It is clearly a fixed point of the endomorphism ''f'': the unique such sequence beginning with the letter ''a''.Lothaire (2011) p. 10Honkala (2010) p.505 In general, a morphic word is the image of a pure morphic word under a coding, that is, a morphism that maps letter to letter. If a morphic word is c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Number
An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, (1 + \sqrt)/2, is an algebraic number, because it is a root of the polynomial . That is, it is a value for x for which the polynomial evaluates to zero. As another example, the complex number 1 + i is algebraic because it is a root of . All integers and rational numbers are algebraic, as are all roots of integers. Real and complex numbers that are not algebraic, such as and , are called transcendental numbers. The set of algebraic numbers is countably infinite and has measure zero in the Lebesgue measure as a subset of the uncountable complex numbers. In that sense, almost all complex numbers are transcendental. Examples * All rational numbers are algebraic. Any rational number, expressed as the quotient of an integer and a (non-zero) natural number , satisfies the above definition, because is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Critical Exponent
Critical or Critically may refer to: *Critical, or critical but stable, medical states **Critical, or intensive care medicine * Critical juncture, a discontinuous change studied in the social sciences. * Critical Software, a company specializing in mission and business critical information systems *Critical theory, a school of thought that critiques society and culture by applying knowledge from the social sciences and the humanities * Critically endangered, a risk status for wild species * Criticality (status), the condition of sustaining a nuclear chain reaction Art, entertainment, and media * ''Critical'' (novel), a medical thriller written by Robin Cook * ''Critical'' (TV series), a Sky 1 TV series * "Critical" (''Person of Interest''), an episode of the American television drama series ''Person of Interest'' *"Critical", a 1999 single by Zion I People *Cr1TiKaL (born 1994), an American YouTuber and Twitch streamer See also *Critic * Criticality (other) *Critical Co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also publishes Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Spo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the '' Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationall ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Formal Languages
In logic, mathematics, computer science, and linguistics, a formal language consists of words whose letters are taken from an alphabet and are well-formed according to a specific set of rules. The alphabet of a formal language consists of symbols, letters, or tokens that concatenate into strings of the language. Each string concatenated from symbols of this alphabet is called a word, and the words that belong to a particular formal language are sometimes called ''well-formed words'' or ''well-formed formulas''. A formal language is often defined by means of a formal grammar such as a regular grammar or context-free grammar, which consists of its formation rules. In computer science, formal languages are used among others as the basis for defining the grammar of programming languages and formalized versions of subsets of natural languages in which the words of the language represent concepts that are associated with particular meanings or semantics. In computational complexit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]