HOME



picture info

Cremona–Richmond Configuration
In mathematics, the Cremona–Richmond configuration is a configuration of 15 lines and 15 points, having 3 points on each line and 3 lines through each point, and containing no triangles. It was studied by and . It is a generalized quadrangle with parameters (2,2). Its Levi graph is the Tutte–Coxeter graph. Symmetry The points of the Cremona–Richmond configuration may be identified with the 15=\tbinom unordered pairs of elements of a six-element set; these pairs are called ''duads''. Similarly, the lines of the configuration may be identified with the 15 ways of partitioning the same six elements into three pairs; these partitions are called ''synthemes''. Identified in this way, a point of the configuration is incident to a line of the configuration if and only if the duad corresponding to the point is one of the three pairs in the syntheme corresponding to the line. The symmetric group of all permutations of the six elements underlying this system of duads and synthemes ac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperplane
In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is one less than that of the ambient space. Two lower-dimensional examples of hyperplanes are one-dimensional lines in a plane and zero-dimensional points on a line. Most commonly, the ambient space is -dimensional Euclidean space, in which case the hyperplanes are the -dimensional "flats", each of which separates the space into two half spaces. A reflection across a hyperplane is a kind of motion ( geometric transformation preserving distance between points), and the group of all motions is generated by the reflections. A convex polytope is the intersection of half-spaces. In non-Euclidean geometry, the ambient space might be the -dimensional sphere or hyperbolic space, or more generally a pseudo-Riemannian space form, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graduate Studies In Mathematics
Graduate Studies in Mathematics (GSM) is a series of graduate-level textbooks in mathematics published by the American Mathematical Society (AMS). The books in this series are published ihardcoverane-bookformats. List of books *1 ''The General Topology of Dynamical Systems'', Ethan Akin (1993, ) *2 ''Combinatorial Rigidity'', Jack Graver, Brigitte Servatius, Herman Servatius (1993, ) *3 ''An Introduction to Gröbner Bases'', William W. Adams, Philippe Loustaunau (1994, ) *4 ''The Integrals of Lebesgue, Denjoy, Perron, and Henstock'', Russell A. Gordon (1994, ) *5 ''Algebraic Curves and Riemann Surfaces'', Rick Miranda (1995, ) *6 ''Lectures on Quantum Groups'', Jens Carsten Jantzen (1996, ) *7 ''Algebraic Number Fields'', Gerald J. Janusz (1996, 2nd ed., ) *8 ''Discovering Modern Set Theory. I: The Basics'', Winfried Just, Martin Weese (1996, ) *9 ''An Invitation to Arithmetic Geometry'', Dino Lorenzini (1996, ) *10 ''Representations of Finite and Compact Groups'', Barry Simon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe became the first president while Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance over concerns about competing with the '' American Journal of Mathematics''. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influentia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proceedings Of The Royal Society A
''Proceedings of the Royal Society'' is the main research journal of the Royal Society. The journal began in 1831 and was split into two series in 1905: * Series A: for papers in physical sciences and mathematics. * Series B: for papers in life sciences. Many landmark scientific discoveries are published in the Proceedings, making it one of the most important science journals in history. The journal contains several articles written by prominent scientists such as Paul Dirac, Werner Heisenberg, Ernest Rutherford, Erwin Schrödinger, William Lawrence Bragg, Lord Kelvin, J.J. Thomson, James Clerk Maxwell, Dorothy Hodgkin and Stephen Hawking. In 2004, the Royal Society began '' The Journal of the Royal Society Interface'' for papers at the interface of physical sciences and life sciences. History The journal began in 1831 as a compilation of abstracts of papers in the '' Philosophical Transactions of the Royal Society'', the older Royal Society publication, that began in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Discrete And Computational Geometry
'' Discrete & Computational Geometry'' is a peer-reviewed mathematics journal published quarterly by Springer. Founded in 1986 by Jacob E. Goodman and Richard M. Pollack, the journal publishes articles on discrete geometry and computational geometry. Abstracting and indexing The journal is indexed in: * ''Mathematical Reviews'' * ''Zentralblatt MATH'' * ''Science Citation Index'' * ''Current Contents'' Notable articles Two articles published in ''Discrete & Computational Geometry'', one by Gil Kalai in 1992 with a proof of a subexponential upper bound on the diameter of a polytope and another by Samuel Ferguson in 2006 on the Kepler conjecture on optimal three-dimensional sphere packing, earned their authors the Fulkerson Prize The Fulkerson Prize for outstanding papers in the area of discrete mathematics is sponsored jointly by the Mathematical Optimization Society (MOS) and the American Mathematical Society (AMS). Up to three awards of $1,500 each are presented at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Schläfli Double Six
In geometry, the Schläfli double six is a configuration of 30 points and 12 lines in three-dimensional Euclidean space, introduced by Ludwig Schläfli in 1858. The lines of the configuration can be partitioned into two subsets of six lines: each line is disjoint from ( skew with) the lines in its own subset of six lines, and intersects all but one of the lines in the other subset of six lines. Each of the 12 lines of the configuration contains five intersection points, and each of these 30 intersection points belongs to exactly two lines, one from each subset, so in the notation of configurations the Schläfli double six is written 302125. Construction As Schläfli showed, the double six may be constructed from any five lines ''a''1, ''a''2, ''a''3, ''a''4, ''a''5, that are all intersected by a common line ''b''6, but are otherwise in general position (in particular, each two lines ''a''''i'' and ''a''''j'' should be skew, and no four of the lines ''a''''i'' should lie on a com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cubic Surface
In mathematics, a cubic surface is a surface in 3-dimensional space defined by one polynomial equation of degree 3. Cubic surfaces are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space, and so cubic surfaces are generally considered in projective 3-space \mathbf^3. The theory also becomes more uniform by focusing on surfaces over the complex numbers rather than the real numbers; note that a complex surface has real dimension 4. A simple example is the Fermat cubic surface :x^3+y^3+z^3+w^3=0 in \mathbf^3. Many properties of cubic surfaces hold more generally for del Pezzo surfaces. Rationality of cubic surfaces A central feature of smooth scheme, smooth cubic surfaces ''X'' over an algebraically closed field is that they are all rational variety, rational, as shown by Alfred Clebsch in 1866. That is, there is a one-to-one correspondence defined by rational functions between the projective plane \mathbf^2 min ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Outer Automorphism
In mathematics, the outer automorphism group of a group, , is the quotient, , where is the automorphism group of and ) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted . If is trivial and has a trivial center, then is said to be complete. An automorphism of a group that is not inner is called an outer automorphism. The cosets of with respect to outer automorphisms are then the elements of ; this is an instance of the fact that quotients of groups are not, in general, (isomorphic to) subgroups. If the inner automorphism group is trivial (when a group is abelian), the automorphism group and outer automorphism group are naturally identified; that is, the outer automorphism group does act on the group. For example, for the alternating group, , the outer automorphism group is usually the group of order 2, with exceptions noted below. Considering as a subgroup of the symmetric group, , conjugation by any odd permutation is an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Configuration (geometry)
In mathematics, specifically projective geometry, a configuration in the plane consists of a finite set of points, and a finite arrangement of lines, such that each point is incident to the same number of lines and each line is incident to the same number of points. Although certain specific configurations had been studied earlier (for instance by Thomas Kirkman in 1849), the formal study of configurations was first introduced by Theodor Reye in 1876, in the second edition of his book ''Geometrie der Lage'', in the context of a discussion of Desargues' theorem. Ernst Steinitz wrote his dissertation on the subject in 1894, and they were popularized by Hilbert and Cohn-Vossen's 1932 book ''Anschauliche Geometrie'', reprinted in English as . Configurations may be studied either as concrete sets of points and lines in a specific geometry, such as the Euclidean or projective planes (these are said to be ''realizable'' in that geometry), or as a type of abstract incidence geome ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Duality (projective Geometry)
In projective geometry, duality or plane duality is a formalization of the striking symmetry of the roles played by Point (geometry), points and Line (geometry), lines in the definitions and theorems of projective planes. There are two approaches to the subject of duality, one through language () and the other a more functional approach through special Map (mathematics), mappings. These are completely equivalent and either treatment has as its starting point the axiomatic version of the geometries under consideration. In the functional approach there is a map between related geometries that is called a ''duality''. Such a map can be constructed in many ways. The concept of plane duality readily extends to ''space duality'' and beyond that to duality in any finite-dimensional projective geometry. Principle of duality A projective plane may be defined axiomatically as an incidence structure, in terms of a set of ''points'', a set of ''lines'', and an incidence relation that de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Automorphism
In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms of an object forms a group, called the automorphism group. It is, loosely speaking, the symmetry group of the object. Definition In an algebraic structure such as a group, a ring, or vector space, an ''automorphism'' is simply a bijective homomorphism of an object into itself. (The definition of a homomorphism depends on the type of algebraic structure; see, for example, group homomorphism, ring homomorphism, and linear operator.) More generally, for an object in some category, an automorphism is a morphism of the object to itself that has an inverse morphism; that is, a morphism f: X\to X is an automorphism if there is a morphism g: X\to X such that g\circ f= f\circ g = \operatorname _X, where \operatorname _X is the identity ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]