Convergence (logic)
In mathematics, computer science and logic, convergence is the idea that different sequences of transformations come to a conclusion in a finite amount of time (the transformations are terminating), and that the conclusion reached is independent of the path taken to get to it (they are confluent). More formally, a preordered set of term rewriting transformations are said to be convergent if they are confluent and terminating. See also * Logical equality *Logical equivalence In logic and mathematics, statements p and q are said to be logically equivalent if they have the same truth value in every model. The logical equivalence of p and q is sometimes expressed as p \equiv q, p :: q, \textsfpq, or p \iff q, depending ... * Rule of replacement References Rewriting systems {{plt-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computer Science
Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, applied disciplines (including the design and implementation of Computer architecture, hardware and Software engineering, software). Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and preventing security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Programming language theory considers different ways to describe computational processes, and database theory concerns the management of re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. Informal logic examines arguments expressed in natural language whereas formal logic uses formal language. When used as a countable noun, the term "a logic" refers to a specific logical formal system that articulates a proof system. Logic plays a central role in many fields, such as philosophy, mathematics, computer science, and linguistics. Logic studies arguments, which consist of a set of premises that leads to a conclusion. An example is the argument from the premises "it's Sunday" and "if it's Sunday then I don't have to work" leading to the conclusion "I don't have to wor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Newman's Lemma
In theoretical computer science, specifically in term rewriting, Newman's lemma, also commonly called the diamond lemma, is a criterion to prove that an abstract rewriting system is Confluence (abstract rewriting), confluent. It states that Confluence (abstract rewriting)#Local confluence, local confluence is a sufficient condition for confluence, provided that the system is also Abstract rewriting system#Termination and convergence, terminating. This is useful since local confluence is usually easier to verify than confluence. The lemma was originally proved by Max Newman in 1942. A considerably simpler proof (given below) was proposed by Gérard Huet. A number of other proofs exist. Statement and proof The lemma is purely combinatorial and applies to any relation. Owing to the context where it is commonly applied, it is stated below in the terminology of abstract rewriting systems (this is simply a set whose elements are called terms, equipped with a relation \to called reducti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Confluence (abstract Rewriting)
In computer science and mathematics, confluence is a property of rewriting systems, describing which terms in such a system can be rewritten in more than one way, to yield the same result. This article describes the properties in the most abstract setting of an abstract rewriting system. Motivating examples The usual rules of elementary arithmetic form an abstract rewriting system. For example, the expression (11 + 9) × (2 + 4) can be evaluated starting either at the left or at the right parentheses; however, in both cases the same result is eventually obtained. If every arithmetic expression evaluates to the same result regardless of reduction strategy, the arithmetic rewriting system is said to be ground-confluent. Arithmetic rewriting systems may be confluent or only ground-confluent depending on details of the rewriting system. A second, more abstract example is obtained from the following proof of each group element equalling the inverse of its inverse: Th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Preorder
In mathematics, especially in order theory, a preorder or quasiorder is a binary relation that is reflexive relation, reflexive and Transitive relation, transitive. The name is meant to suggest that preorders are ''almost'' partial orders, but not quite, as they are not necessarily Antisymmetric relation, antisymmetric. A natural example of a preorder is the Divisor#Definition, divides relation "x divides y" between integers, polynomials, or elements of a commutative ring. For example, the divides relation is reflexive as every integer divides itself. But the divides relation is not antisymmetric, because 1 divides -1 and -1 divides 1. It is to this preorder that "greatest" and "lowest" refer in the phrases "greatest common divisor" and "lowest common multiple" (except that, for integers, the greatest common divisor is also the greatest for the natural order of the integers). Preorders are closely related to equivalence relations and (non-strict) partial orders. Both of th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Term Rewriting
In mathematics, computer science, and logic, rewriting covers a wide range of methods of replacing subterms of a formula with other terms. Such methods may be achieved by rewriting systems (also known as rewrite systems, rewrite engines, or reduction systems). In their most basic form, they consist of a set of objects, plus relations on how to transform those objects. Rewriting can be non-deterministic. One rule to rewrite a term could be applied in many different ways to that term, or more than one rule could be applicable. Rewriting systems then do not provide an algorithm for changing one term to another, but a set of possible rule applications. When combined with an appropriate algorithm, however, rewrite systems can be viewed as computer programs, and several theorem provers and declarative programming languages are based on term rewriting. Example cases Logic In logic, the procedure for obtaining the conjunctive normal form (CNF) of a formula can be implemented as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logical Equality
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. Informal logic examines arguments expressed in natural language whereas formal logic uses formal language. When used as a countable noun, the term "a logic" refers to a specific logical formal system that articulates a proof system. Logic plays a central role in many fields, such as philosophy, mathematics, computer science, and linguistics. Logic studies arguments, which consist of a set of premises that leads to a conclusion. An example is the argument from the premises "it's Sunday" and "if it's Sunday then I don't have to work" leading to the conclusion "I don't have to work." Premise ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logical Equivalence
In logic and mathematics, statements p and q are said to be logically equivalent if they have the same truth value in every model. The logical equivalence of p and q is sometimes expressed as p \equiv q, p :: q, \textsfpq, or p \iff q, depending on the notation being used. However, these symbols are also used for material equivalence, so proper interpretation would depend on the context. Logical equivalence is different from material equivalence, although the two concepts are intrinsically related. Logical equivalences In logic, many common logical equivalences exist and are often listed as laws or properties. The following tables illustrate some of these. General logical equivalences Logical equivalences involving conditional statements :#p \rightarrow q \equiv \neg p \vee q :#p \rightarrow q \equiv \neg q \rightarrow \neg p :#p \vee q \equiv \neg p \rightarrow q :#p \wedge q \equiv \neg (p \rightarrow \neg q) :#\neg (p \rightarrow q) \equiv p \wedge \neg q :#(p \righta ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rule Of Replacement
In logic, a rule of replacement is a transformation rule that may be applied to only a particular segment of an expression. A logical system may be constructed so that it uses either axioms, rules of inference, or both as transformation rules for logical expressions in the system. Whereas a rule of inference is always applied to a whole logical expression, a rule of replacement may be applied to only a particular segment. Within the context of a logical proof, logically equivalent expressions may replace each other. Rules of replacement are used in propositional logic to manipulate propositions. Common rules of replacement include de Morgan's laws, commutation, association, distribution, double negation, transposition, material implication, logical equivalence, exportation, and tautology. Table: Rules of Replacement The rules above can be summed up in the following table.Kenneth H. Rosen: ''Discrete Mathematics and its Applications'', Fifth Edition, p. 58. The " Tauto ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |