Convenient Vector Space
In mathematics, convenient vector spaces are locally convex vector spaces satisfying a very mild completeness condition. Traditional differential calculus is effective in the analysis of finite-dimensional vector spaces and for Banach spaces. Beyond Banach spaces, difficulties begin to arise; in particular, composition of continuous linear mappings stop being jointly continuous at the level of Banach spaces, for any compatible topology on the spaces of continuous linear mappings. Mappings between convenient vector spaces are smooth or C^\infty if they map smooth curves to smooth curves. This leads to a Cartesian closed category of smooth mappings between c^\infty-open subsets of convenient vector spaces (see property 6 below). The corresponding calculus of smooth mappings is called ''convenient calculus''. It is weaker than any other reasonable notion of differentiability, it is easy to apply, but there are smooth mappings which are not continuous (see Note 1). This type of cal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Locally Convex
In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals. Fréchet spaces are locally convex topological vector spaces that are completely metrizable (with a choice of complete metric). They are generalizations of Banach spaces, which are complete vector spaces with respect to a metric generated by a norm. History Metrizable ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Final Topology
In general topology and related areas of mathematics, the final topology (or coinduced, weak, colimit, or inductive topology) on a Set (mathematics), set X, with respect to a family of functions from Topological space, topological spaces into X, is the finest topology on X that makes all those functions Continuous function (topology), continuous. The Quotient space (topology), quotient topology on a quotient space is a final topology, with respect to a single surjective function, namely the quotient map. The Disjoint union (topology), disjoint union topology is the final topology with respect to the inclusion maps. The final topology is also the topology that every direct limit in the category of topological spaces is endowed with, and it is in the context of direct limits that the final topology often appears. A topology is Coherent topology, coherent with some collection of Subspace topology, subspaces if and only if it is the final topology induced by the natural inclusions. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lie Group
In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (to allow division), or equivalently, the concept of addition and subtraction. Combining these two ideas, one obtains a continuous group where multiplying points and their inverses is continuous. If the multiplication and taking of inverses are smoothness, smooth (differentiable) as well, one obtains a Lie group. Lie groups provide a natural model for the concept of continuous symmetry, a celebrated example of which is the circle group. Rotating a circle is an example of a continuous symmetry. For an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tangent Bundle
A tangent bundle is the collection of all of the tangent spaces for all points on a manifold, structured in a way that it forms a new manifold itself. Formally, in differential geometry, the tangent bundle of a differentiable manifold M is a manifold TM which assembles all the tangent vectors in M . As a set, it is given by the disjoint unionThe disjoint union ensures that for any two points and of manifold the tangent spaces and have no common vector. This is graphically illustrated in the accompanying picture for tangent bundle of circle , see Examples section: all tangents to a circle lie in the plane of the circle. In order to make them disjoint it is necessary to align them in a plane perpendicular to the plane of the circle. of the tangent spaces of M . That is, : \begin TM &= \bigsqcup_ T_xM \\ &= \bigcup_ \left\ \times T_xM \\ &= \bigcup_ \left\ \\ &= \left\ \end where T_x M denotes the tangent space to M at the point x . So, an el ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exponential Map (Riemannian Geometry)
In Riemannian geometry, an exponential map is a map from a subset of a tangent space T''p''''M'' of a Riemannian manifold (or pseudo-Riemannian manifold) ''M'' to ''M'' itself. The (pseudo) Riemannian metric determines a canonical affine connection, and the exponential map of the (pseudo) Riemannian manifold is given by the exponential map of this connection. Definition Let be a differentiable manifold and a point of . An affine connection on allows one to define the notion of a straight line through the point .A source for this section is , which uses the term "linear connection" where we use "affine connection" instead. Let be a tangent vector to the manifold at . Then there is a unique geodesic :[0,1] → satisfying with initial tangent vector . The corresponding exponential map is defined by . In general, the exponential map is only ''locally defined'', that is, it only takes a small neighborhood of the origin at , to a neighborhood of in the manifold. This is b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Riemannian Manifold
In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surfaces in three-dimensional space, such as ellipsoids and paraboloids, are all examples of Riemannian manifold, manifolds. Riemannian manifolds are named after German mathematician Bernhard Riemann, who first conceptualized them. Formally, a Riemannian metric (or just a metric) on a smooth manifold is a choice of inner product for each tangent space of the manifold. A Riemannian manifold is a smooth manifold together with a Riemannian metric. The techniques of differential and integral calculus are used to pull geometric data out of the Riemannian metric. For example, integration leads to the Riemannian distance function, whereas differentiation is used to define curvature and parallel transport. Any smooth surface in three-dimensional Eucl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces. One suc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differentiable Manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart. In formal terms, a differentiable manifold is a topological manifold with a globally defined differential structure. Any topological manifold can be given a differential structure locally by using the homeomorphisms in its atlas and the standard differential structure on a vector space. To induce a global differential structure on the local coordinate systems induced by the homeomorphism ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fréchet Space
In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces ( normed vector spaces that are complete with respect to the metric induced by the norm). All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically Banach spaces. A Fréchet space X is defined to be a locally convex metrizable topological vector space (TVS) that is complete as a TVS, meaning that every Cauchy sequence in X converges to some point in X (see footnote for more details).Here "Cauchy" means Cauchy with respect to the canonical uniformity that every TVS possess. That is, a sequence x_ = \left(x_m\right)_^ in a TVS X is Cauchy if and only if for all neighborhoods U of the origin in X, x_m - x_n \in U whenever m and n are sufficiently large. Note that this definiti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mackey Convergent Sequence
In mathematics, particularly in functional analysis, a bornological space is a type of space which, in some sense, possesses the minimum amount of structure needed to address questions of boundedness of sets and linear maps, in the same way that a topological space possesses the minimum amount of structure needed to address questions of continuity. Bornological spaces are distinguished by the property that a linear map from a bornological space into any locally convex spaces is continuous if and only if it is a bounded linear operator. Bornological spaces were first studied by George Mackey. The name was coined by Bourbaki after , the French word for " bounded". Bornologies and bounded maps A on a set X is a collection \mathcal of subsets of X that satisfy all the following conditions: \mathcal covers X; that is, X = \cup \mathcal; \mathcal is stable under inclusions; that is, if B \in \mathcal and A \subseteq B, then A \in \mathcal; \mathcal is stable under finite unions; ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Minkowski Functional
In mathematics, in the field of functional analysis, a Minkowski functional (after Hermann Minkowski) or gauge function is a function that recovers a notion of distance on a linear space. If K is a subset of a real or complex vector space X, then the or of K is defined to be the function p_K : X \to , \infty valued in the extended real numbers, defined by p_K(x) := \inf \ \quad \text x \in X, where the infimum of the empty set is defined to be positive infinity \,\infty\, (which is a real number so that p_K(x) would then be real-valued). The set K is often assumed/picked to have properties, such as being an absorbing disk in X, that guarantee that p_K will be a real-valued seminorm on X. In fact, every seminorm p on X is equal to the Minkowski functional (that is, p = p_K) of any subset K of X satisfying \ \subseteq K \subseteq \ (where all three of these sets are necessarily absorbing in X and the first and last are also disks). Thus every seminorm (which is a d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |