HOME



picture info

Contact Process (mathematics)
The contact process is a stochastic process used to model population growth on the set of sites S of a graph in which occupied sites become vacant at a constant rate, while vacant sites become occupied at a rate proportional to the number of occupied neighboring sites. Therefore, if we denote by \lambda the proportionality constant, each site remains occupied for a random time period which is exponentially distributed parameter 1 and places descendants at every vacant neighboring site at times of events of a Poisson process parameter \lambda during this period. All processes are independent of one another and of the random period of time sites remains occupied. The contact process can also be interpreted as a model for the spread of an infection by thinking of particles as a bacterium spreading over individuals that are positioned at the sites of S, occupied sites correspond to infected individuals, whereas vacant correspond to healthy ones. The main quantity of interest is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Contact Process
The contact process is the current method of producing sulfuric acid in the high concentrations needed for industrial processes. Platinum was originally used as the catalyst for this reaction; however, as it is susceptible to reacting with arsenic impurities in the sulfur feedstock, vanadium(V) oxide (V2O5) is now preferred. History This process was patented in 1831 by British vinegar merchant Peregrine Phillips. In addition to being a far more economical process for producing concentrated sulfuric acid than the previous lead chamber process, the contact process also produces sulfur trioxide and oleum. In 1901 Eugen de Haën patented the basic process involving combining sulfur dioxide and oxygen in the presence of vanadium oxides, producing sulfur trioxide which was easily absorbed into water, producing sulfuric acid. This process was improved remarkably by shrinking the particle size of the catalyst (e.g. :le 5000 microns), a process discovered by two chemists of BASF i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Law Of Large Numbers
In probability theory, the law of large numbers (LLN) is a theorem that describes the result of performing the same experiment a large number of times. According to the law, the average of the results obtained from a large number of trials should be close to the expected value and tends to become closer to the expected value as more trials are performed. The LLN is important because it guarantees stable long-term results for the averages of some random events. For example, while a casino may lose money in a single spin of the roulette wheel, its earnings will tend towards a predictable percentage over a large number of spins. Any winning streak by a player will eventually be overcome by the parameters of the game. Importantly, the law applies (as the name indicates) only when a ''large number'' of observations are considered. There is no principle that a small number of observations will coincide with the expected value or that a streak of one value will immediately be "balanc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thomas M
Thomas may refer to: People * List of people with given name Thomas * Thomas (name) * Thomas (surname) * Saint Thomas (other) * Thomas Aquinas (1225–1274) Italian Dominican friar, philosopher, and Doctor of the Church * Thomas the Apostle * Thomas (bishop of the East Angles) (fl. 640s–650s), medieval Bishop of the East Angles * Thomas (Archdeacon of Barnstaple) (fl. 1203), Archdeacon of Barnstaple * Thomas, Count of Perche (1195–1217), Count of Perche * Thomas (bishop of Finland) (1248), first known Bishop of Finland * Thomas, Earl of Mar (1330–1377), 14th-century Earl, Aberdeen, Scotland Geography Places in the United States * Thomas, Illinois * Thomas, Indiana * Thomas, Oklahoma * Thomas, Oregon * Thomas, South Dakota * Thomas, Virginia * Thomas, Washington * Thomas, West Virginia * Thomas County (other) * Thomas Township (other) Elsewhere * Thomas Glacier (Greenland) Arts, entertainment, and media * ''Thomas'' (Burton no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rick Durrett
Richard Timothy Durrett is an American mathematician known for his research and books on mathematical probability theory, stochastic processes and their application to mathematical ecology and population genetics. Education and career He received his BS and MS at Emory University in 1972 and 1973 and his Ph.D. at Stanford University in 1976 under advisor Donald Iglehart. From 1976 to 1985 he taught at UCLA. From 1985 until 2010 was on the faculty at Cornell University, where his students included Claudia Neuhauser. Since 2010, Durrett has been a professor at Duke University. He was elected to the United States National Academy of Sciences in 2007. In 2012 he became a fellow of the American Mathematical Society The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings .... Durrett is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Proof
A mathematical proof is an Inference, inferential Argument-deduction-proof distinctions, argument for a Proposition, mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning which establish logical certainty, to be distinguished from empirical evidence, empirical arguments or non-exhaustive inductive reasoning which establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in ''all'' possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for furthe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Normal Distribution
In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu is the mean or expectation of the distribution (and also its median and mode), while the parameter \sigma is its standard deviation. The variance of the distribution is \sigma^2. A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate. Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known. Their importance is partly due to the central limit theorem. It states that, under some conditions, the average of many samples (observations) of a random variable with finite mean and variance is itself a random variable—whose distribution converges to a normal dist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Open Problem
In science and mathematics, an open problem or an open question is a known problem which can be accurately stated, and which is assumed to have an objective and verifiable solution, but which has not yet been solved (i.e., no solution for it is known). In the history of science, some of these supposed open problems were "solved" by means of showing that they were not well-defined. In mathematics, many open problems are concerned with the question of whether a certain definition is or is not consistent. Two notable examples in mathematics that have been solved and ''closed'' by researchers in the late twentieth century are Fermat's Last Theorem and the four-color theorem.K. Appel and W. Haken (1977), "Every planar map is four colorable. Part I. Discharging", ''Illinois J. Math'' 21: 429–490. K. Appel, W. Haken, and J. Koch (1977), "Every planar map is four colorable. Part II. Reducibility", ''Illinois J. Math'' 21: 491–567. An important open mathematics problem solve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Central Limit Theorem
In probability theory, the central limit theorem (CLT) establishes that, in many situations, when independent random variables are summed up, their properly normalized sum tends toward a normal distribution even if the original variables themselves are not normally distributed. The theorem is a key concept in probability theory because it implies that probabilistic and statistical methods that work for normal distributions can be applicable to many problems involving other types of distributions. This theorem has seen many changes during the formal development of probability theory. Previous versions of the theorem date back to 1811, but in its modern general form, this fundamental result in probability theory was precisely stated as late as 1920, thereby serving as a bridge between classical and modern probability theory. If X_1, X_2, \dots, X_n, \dots are random samples drawn from a population with overall mean \mu and finite variance and if \bar_n is the sample mea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Richard Timothy Durrett
Richard Timothy Durrett is an American mathematician known for his research and books on mathematical probability theory, stochastic processes and their application to mathematical ecology and population genetics. Education and career He received his BS and MS at Emory University in 1972 and 1973 and his Ph.D. at Stanford University in 1976 under advisor Donald Iglehart. From 1976 to 1985 he taught at UCLA. From 1985 until 2010 was on the faculty at Cornell University, where his students included Claudia Neuhauser. Since 2010, Durrett has been a professor at Duke University. He was elected to the United States National Academy of Sciences in 2007. In 2012 he became a fellow of the American Mathematical Society The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, .... Durrett is the f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Convergence Of Random Variables
In probability theory, there exist several different notions of convergence of random variables. The convergence of sequences of random variables to some limit random variable is an important concept in probability theory, and its applications to statistics and stochastic processes. The same concepts are known in more general mathematics as stochastic convergence and they formalize the idea that a sequence of essentially random or unpredictable events can sometimes be expected to settle down into a behavior that is essentially unchanging when items far enough into the sequence are studied. The different possible notions of convergence relate to how such a behavior can be characterized: two readily understood behaviors are that the sequence eventually takes a constant value, and that values in the sequence continue to change but can be described by an unchanging probability distribution. Background "Stochastic convergence" formalizes the idea that a sequence of essentially rando ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Law Of Large Numbers
In probability theory, the law of large numbers (LLN) is a theorem that describes the result of performing the same experiment a large number of times. According to the law, the average of the results obtained from a large number of trials should be close to the expected value and tends to become closer to the expected value as more trials are performed. The LLN is important because it guarantees stable long-term results for the averages of some random events. For example, while a casino may lose money in a single spin of the roulette wheel, its earnings will tend towards a predictable percentage over a large number of spins. Any winning streak by a player will eventually be overcome by the parameters of the game. Importantly, the law applies (as the name indicates) only when a ''large number'' of observations are considered. There is no principle that a small number of observations will coincide with the expected value or that a streak of one value will immediately be "balanc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stochastic Process
In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables. Stochastic processes are widely used as mathematical models of systems and phenomena that appear to vary in a random manner. Examples include the growth of a bacterial population, an electrical current fluctuating due to thermal noise, or the movement of a gas molecule. Stochastic processes have applications in many disciplines such as biology, chemistry, ecology, neuroscience, physics, image processing, signal processing, control theory, information theory, computer science, cryptography and telecommunications. Furthermore, seemingly random changes in financial markets have motivated the extensive use of stochastic processes in finance. Applications and the study of phenomena have in turn inspired the proposal of new stochastic processes. Examples of such stochastic processes include the Wiener process or Brownian motion ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]