HOME





Complex Projective Plane
In mathematics, the complex projective plane, usually denoted or is the two-dimensional complex projective space. It is a complex manifold of complex dimension 2, described by three complex coordinates :(Z_1,Z_2,Z_3) \in \C^3, \qquad (Z_1,Z_2,Z_3)\neq (0,0,0) where, however, the triples differing by an overall rescaling are identified: :(Z_1,Z_2,Z_3) \equiv (\lambda Z_1,\lambda Z_2, \lambda Z_3); \quad \lambda \in \C, \qquad \lambda \neq 0. That is, these are homogeneous coordinates in the traditional sense of projective geometry. Topology The Betti numbers of the complex projective plane are :1, 0, 1, 0, 1, 0, 0, ..... The middle dimension 2 is accounted for by the homology class of the complex projective line, or Riemann sphere, lying in the plane. The nontrivial homotopy groups of the complex projective plane are \pi_2=\pi_5=\mathbb. The fundamental group is trivial and all other higher homotopy groups are those of the 5-sphere, i.e. torsion. Algebraic geometry In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cremona Group
In birational geometry, the Cremona group, named after Luigi Cremona, is Birational geometry#Birational automorphism groups, the group of birational automorphisms of the n-dimensional projective space over a Field (mathematics), field , also known as Cremona transformations. It is denoted by Cr(\mathbb^n(k)), Bir(\mathbb^n(k)) or Cr_n(k). Historical origins The Cremona group was introduced by the italian mathematician . However, some historians consider Isaac Newton as a "founder of the theory of Cremona transformations" through his work done two centuries before, in 1667 and 1687. Contributions were also made by Hilda Phoebe Hudson in the 1900s. Basic properties The Cremona group is naturally identified with the automorphism group \mathrm_k(k(x_1, ..., x_n)) of the rational function, field of the rational functions in n Indeterminate (variable), indeterminates over k. Here, the field k(x_1, ..., x_n) is a pure transcendental extension of k, with transcendence degree n. The p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Surfaces
In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two (as a complex manifold, when it is non-singular) and so of dimension four as a smooth manifold. The theory of algebraic surfaces is much more complicated than that of algebraic curves (including the compact Riemann surfaces, which are genuine surfaces of (real) dimension two). Many results were obtained, but, in the Italian school of algebraic geometry , and are up to 100 years old. Classification by the Kodaira dimension In the case of dimension one, varieties are classified by only the topological genus, but, in dimension two, one needs to distinguish the arithmetic genus p_a and the geometric genus p_g because one cannot distinguish birationally only the topological genus. Then, irregularity is introduced for the classification of varieties. A summary of the results (in detail, for each ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fake Projective Plane
In mathematics, a fake projective plane (or Mumford surface) is one of the 50 complex algebraic surfaces that have the same Betti numbers as the projective plane, but are not isomorphic to it. Such objects are always algebraic surfaces of general type. History Severi asked if there was a complex surface homeomorphic to the projective plane but not biholomorphic to it. showed that there was no such surface, so the closest approximation to the projective plane one can have would be a surface with the same Betti numbers (''b''0,''b''1,''b''2,''b''3,''b''4) = (1,0,1,0,1) as the projective plane. The first example was found by using ''p''-adic uniformization introduced independently by Kurihara and Mustafin. Mumford also observed that Yau's result together with Weil's theorem on the rigidity of discrete cocompact subgroups of PU(1,2) implies that there are only a finite number of fake projective planes. found two more examples, using similar methods, and found an example with an a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Toric Geometry
In algebraic geometry, a toric variety or torus embedding is an algebraic variety containing an algebraic torus as an open dense subset, such that the action of the torus on itself extends to the whole variety. Some authors also require it to be normal. Toric varieties form an important and rich class of examples in algebraic geometry, which often provide a testing ground for theorems. The geometry of a toric variety is fully determined by the combinatorics of its associated fan, which often makes computations far more tractable. For a certain special, but still quite general class of toric varieties, this information is also encoded in a polytope, which creates a powerful connection of the subject with convex geometry. Familiar examples of toric varieties are affine space, projective spaces, products of projective spaces and bundles over projective space. Toric varieties from tori The original motivation to study toric varieties was to study torus embeddings. Given the algebrai ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Del Pezzo Surface
In mathematics, a del Pezzo surface or Fano surface is a two-dimensional Fano variety, in other words a non-singular projective algebraic surface with ample anticanonical divisor class. They are in some sense the opposite of surfaces of general type, whose canonical class is big. They are named for Pasquale del Pezzo who studied the surfaces with the more restrictive condition that they have a very ample anticanonical divisor class, or in his language the surfaces with a degree ''n'' embedding in ''n''-dimensional projective space , which are the del Pezzo surfaces of degree at least 3. Classification A del Pezzo surface is a complete non-singular surface with ample anticanonical bundle. There are some variations of this definition that are sometimes used. Sometimes del Pezzo surfaces are allowed to have singularities. They were originally assumed to be embedded in projective space by the anticanonical embedding, which restricts the degree to be at least 3. The degree ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Circular Points At Infinity
In projective geometry, the circular points at infinity (also called cyclic points or isotropic points) are two special points at infinity in the complex projective plane that are contained in the complexification of every real circle. Coordinates A point of the complex projective plane may be described in terms of homogeneous coordinates, being a triple of complex numbers , where two triples describe the same point of the plane when the coordinates of one triple are the same as those of the other aside from being multiplied by the same nonzero factor. In this system, the points at infinity may be chosen as those whose ''z''-coordinate is zero. The two circular points at infinity are two of these, usually taken to be those with homogeneous coordinates : and . Trilinear coordinates Let ''A''. ''B''. ''C'' be the measures of the vertex angles of the reference triangle ABC. Then the trilinear coordinates of the circular points at infinity in the plane of the reference triangle ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gaussian Curvature
In differential geometry, the Gaussian curvature or Gauss curvature of a smooth Surface (topology), surface in three-dimensional space at a point is the product of the principal curvatures, and , at the given point: K = \kappa_1 \kappa_2. For example, a sphere of radius has Gaussian curvature everywhere, and a flat plane and a cylinder have Gaussian curvature zero everywhere. The Gaussian curvature can also be negative, as in the case of a hyperboloid or the inside of a torus. Gaussian curvature is an ''intrinsic'' measure of curvature, meaning that it could in principle be measured by a 2-dimensional being living entirely within the surface, because it depends only on distances that are measured “within” or along the surface, not on the way it is isometrically embedding, embedded in Euclidean space. This is the content of the ''Theorema Egregium''. Gaussian curvature is named after Carl Friedrich Gauss, who published the ''Theorema Egregium'' in 1827. Informal definit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Sphere Theorem
In Riemannian geometry, the sphere theorem, also known as the quarter-pinched sphere theorem, strongly restricts the topology of manifolds admitting metrics with a particular curvature bound. The precise statement of the theorem is as follows. If M is a complete, simply-connected, ''n''-dimensional Riemannian manifold with sectional curvature taking values in the interval (1,4] then M is homeomorphic to the ''n''-sphere. (To be precise, we mean the sectional curvature of every tangent 2-plane at each point must lie in (1,4].) Another way of stating the result is that if M is not homeomorphic to the sphere, then it is impossible to put a metric on M with quarter-pinched curvature. Note that the conclusion is false if the sectional curvatures are allowed to take values in the ''closed'' interval ,4/math>. The standard counterexample is complex projective space with the Fubini–Study metric; sectional curvatures of this metric take on values between 1 and 4, with endpoints inc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemannian Manifold
In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surfaces in three-dimensional space, such as ellipsoids and paraboloids, are all examples of Riemannian manifold, manifolds. Riemannian manifolds are named after German mathematician Bernhard Riemann, who first conceptualized them. Formally, a Riemannian metric (or just a metric) on a smooth manifold is a choice of inner product for each tangent space of the manifold. A Riemannian manifold is a smooth manifold together with a Riemannian metric. The techniques of differential and integral calculus are used to pull geometric data out of the Riemannian metric. For example, integration leads to the Riemannian distance function, whereas differentiation is used to define curvature and parallel transport. Any smooth surface in three-dimensional Eucl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadric
In mathematics, a quadric or quadric surface is a generalization of conic sections (ellipses, parabolas, and hyperbolas). In three-dimensional space, quadrics include ellipsoids, paraboloids, and hyperboloids. More generally, a quadric hypersurface (of dimension ''D'') embedded in a higher dimensional space (of dimension ) is defined as the zero set of an irreducible polynomial of degree two in variables; for example, ''D''1 is the case of conic sections ( plane curves). When the defining polynomial is not absolutely irreducible, the zero set is generally not considered a quadric, although it is often called a ''degenerate quadric'' or a ''reducible quadric''. A quadric is an affine algebraic variety, or, if it is reducible, an affine algebraic set. Quadrics may also be defined in projective spaces; see , below. Formulation In coordinates , the general quadric is thus defined by the algebraic equationSilvio LevQuadricsin "Geometry Formulas and Facts", excerpted from 3 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]