Closed Subgroup Theorem
In mathematics, the closed-subgroup theorem (sometimes referred to as Cartan's theorem) is a theorem in the theory of Lie group theory, Lie groups. It states that if is a closed subgroup of a Lie group , then is an Embedding, embedded Lie group with the smooth structure (and hence the Topological group, group topology) agreeing with the embedding. One of several results known as Cartan's theorem (other), Cartan's theorem, it was first published in 1930 by Élie Cartan, who was inspired by John von Neumann's 1929 proof of a special case for groups of linear map, linear transformations. Overview Let be a Lie group with Lie algebra \mathfrak. Now let be an arbitrary closed subgroup of . It is necessary to show that is a smooth embedded submanifold of . The first step is to identify something that could be the Lie algebra of , that is, the tangent space of at the identity. The challenge is that is not assumed to have any smoothness and therefore it is not clear how one ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dense Set
In topology and related areas of mathematics, a subset ''A'' of a topological space ''X'' is said to be dense in ''X'' if every point of ''X'' either belongs to ''A'' or else is arbitrarily "close" to a member of ''A'' — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it (see Diophantine approximation). Formally, A is dense in X if the smallest closed subset of X containing A is X itself. The of a topological space X is the least cardinality of a dense subset of X. Definition A subset A of a topological space X is said to be a of X if any of the following equivalent conditions are satisfied: The smallest closed subset of X containing A is X itself. The closure of A in X is equal to X. That is, \operatorname_X A = X. The interior of the complement of A is empty. That is, \operatorname_X (X \setminus A) = \varnothing. Every point in X eith ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Simply Connected
In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every Path (topology), path between two points can be continuously transformed into any other such path while preserving the two endpoints in question. Intuitively, this corresponds to a space that has no disjoint parts and no holes that go completely through it, because two paths going around different sides of such a hole cannot be continuously transformed into each other. The fundamental group of a topological space is an indicator of the failure for the space to be simply connected: a path-connected topological space is simply connected if and only if its fundamental group is trivial. Definition and equivalent formulations A topological space X is called if it is path-connected and any Loop (topology), loop in X defined by f : S^1 \to X can be contracted to a point: there exists a continuous map F : D^2 \to X such that F restricted to S^1 is f. Here, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
One-parameter Subgroup
In mathematics, a one-parameter group or one-parameter subgroup usually means a continuous group homomorphism :\varphi : \mathbb \rightarrow G from the real line \mathbb (as an additive group) to some other topological group G. If \varphi is injective then \varphi(\mathbb), the image, will be a subgroup of G that is isomorphic to \mathbb as an additive group. One-parameter groups were introduced by Sophus Lie in 1893 to define infinitesimal transformations. According to Lie, an ''infinitesimal transformation'' is an infinitely small transformation of the one-parameter group that it generates. It is these infinitesimal transformations that generate a Lie algebra that is used to describe a Lie group of any dimension. The action of a one-parameter group on a set is known as a flow. A smooth vector field on a manifold, at a point, induces a ''local flow'' - a one parameter group of local diffeomorphisms, sending points along integral curves of the vector field. The local flow of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quaternion
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. The algebra of quaternions is often denoted by (for ''Hamilton''), or in blackboard bold by \mathbb H. Quaternions are not a field, because multiplication of quaternions is not, in general, commutative. Quaternions provide a definition of the quotient of two vectors in a three-dimensional space. Quaternions are generally represented in the form a + b\,\mathbf i + c\,\mathbf j +d\,\mathbf k, where the coefficients , , , are real numbers, and , are the ''basis vectors'' or ''basis elements''. Quaternions are used in pure mathematics, but also have practical uses in applied mathematics, particularly for calculations involving three-dimensional rotations, such as in three-dimensional computer graphics, computer vision, robotics, magnetic resonance i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Classical Group
In mathematics, the classical groups are defined as the special linear groups over the reals \mathbb, the complex numbers \mathbb and the quaternions \mathbb together with special automorphism groups of Bilinear form#Symmetric, skew-symmetric and alternating forms, symmetric or Bilinear form#Symmetric, skew-symmetric and alternating forms, skew-symmetric bilinear forms and Sesquilinear form#Hermitian form, Hermitian or Sesquilinear form#Skew-Hermitian form, skew-Hermitian sesquilinear forms defined on real, complex and quaternionic finite-dimensional vector spaces. Of these, the complex classical Lie groups are four infinite families of Lie groups that together with the Simple_Lie_group#Exceptional_cases, exceptional groups exhaust the classification of simple Lie groups. The compact classical groups are compact real forms of the complex classical groups. The finite analogues of the classical groups are the classical groups of Lie type. The term "classical group" was coined by Her ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isotropy Group
In mathematics, a group action of a group G on a set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S. Many sets of transformations form a group under function composition; for example, the rotations around a point in the plane. It is often useful to consider the group as an abstract group, and to say that one has a group action of the abstract group that consists of performing the transformations of the group of transformations. The reason for distinguishing the group from the transformations is that, generally, a group of transformations of a structure acts also on various related structures; for example, the above rotation group also acts on triangles by transforming triangles into triangles. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homogeneous Space
In mathematics, a homogeneous space is, very informally, a space that looks the same everywhere, as you move through it, with movement given by the action of a group. Homogeneous spaces occur in the theories of Lie groups, algebraic groups and topological groups. More precisely, a homogeneous space for a group ''G'' is a non-empty manifold or topological space ''X'' on which ''G'' acts transitively. The elements of ''G'' are called the symmetries of ''X''. A special case of this is when the group ''G'' in question is the automorphism group of the space ''X'' – here "automorphism group" can mean isometry group, diffeomorphism group, or homeomorphism group. In this case, ''X'' is homogeneous if intuitively ''X'' looks locally the same at each point, either in the sense of isometry (rigid geometry), diffeomorphism (differential geometry), or homeomorphism (topology). Some authors insist that the action of ''G'' be faithful (non-identity elements act non-trivially), althou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Submersion (mathematics)
In mathematics, a submersion is a differentiable map between differentiable manifolds whose pushforward (differential), differential is everywhere surjective. It is a basic concept in differential topology, dual to that of an immersion (mathematics), immersion. Definition Let ''M'' and ''N'' be differentiable manifolds, and let f\colon M\to N be a differentiable map between them. The map is a submersion at a point p \in M if its pushforward (differential), differential :Df_p \colon T_p M \to T_N is a surjective linear map. In this case, is called a regular point of the map ; otherwise, is a critical point (mathematics), ''critical point''. A point q \in N is a regular value of if all points in the preimage f^(q) are regular points. A differentiable map that is a submersion at each point p \in M is called a submersion. Equivalently, is a submersion if its differential Df_p has rank (differential topology), constant rank equal to the dimension of . Some authors use the ter ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real-analytic Manifold
In mathematics, an analytic manifold, also known as a C^\omega manifold, is a differentiable manifold with analytic transition maps. The term usually refers to real analytic manifolds, although complex manifolds are also analytic. In algebraic geometry, analytic spaces are a generalization of analytic manifolds such that singularities are permitted. For U \subseteq \R^n, the space of analytic functions, C^(U), consists of infinitely differentiable functions f:U \to \R , such that the Taylor series T_f(\mathbf) = \sum_\frac (\mathbf-\mathbf)^\alpha converges to f(\mathbf) in a neighborhood of \mathbf, for all \mathbf \in U. The requirement that the transition maps be analytic is significantly more restrictive than that they be infinitely differentiable; the analytic manifolds are a proper subset of the smooth, i.e. C^\infty, manifolds. There are many similarities between the theory of analytic and smooth manifolds, but a critical difference is that analytic manifolds do not admi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homeomorphism
In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same. Very roughly speaking, a topological space is a geometric object, and a homeomorphism results from a continuous deformation of the object into a new shape. Thus, a square and a circle are homeomorphic to each other, but a sphere and a torus are not. However, this description can be misleading. Some continuous deformations do not produce homeomorphisms, such as the deformation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |