Clifford Taubes
Clifford Henry Taubes (born February 21, 1954) is the William Petschek Professor of Mathematics at Harvard University and works in gauge field theory, differential geometry, and low-dimensional topology. His brother is the journalist Gary Taubes. Early career Taubes received his PhD in physics in 1980 under the direction of Arthur Jaffe, having proven results collected in about the existence of solutions to the Landau–Ginzburg vortex equations and the Bogomol'nyi monopole equations. Soon, he began applying his gauge-theoretic expertise to pure mathematics. His work on the boundary of the moduli space of solutions to the Yang-Mills equations was used by Simon Donaldson in his proof of Donaldson's theorem. He proved in that R4 has an uncountable number of smooth structures (see also exotic R4), and (with Raoul Bott in ) proved Witten's rigidity theorem on the elliptic genus. Work based on Seiberg–Witten theory In a series of four long papers in the 1990s (collect ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Physics
Mathematical physics refers to the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics (also known as physical mathematics). Scope There are several distinct branches of mathematical physics, and these roughly correspond to particular historical periods. Classical mechanics The rigorous, abstract and advanced reformulation of Newtonian mechanics adopting the Lagrangian mechanics and the Hamiltonian mechanics even in the presence of constraints. Both formulations are embodied in analytical mechanics and lead to understanding the deep interplay of the notions of symmetry (physics), symmetry and conservation law, con ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monopole (mathematics)
In mathematics, a monopole is a connection over a principal bundle ''G'' with a section of the associated adjoint bundle. Physical interpretation Physically, the section can be interpreted as a ''Higgs field'', where the connection and Higgs field should satisfy the Bogomolny equations and be of finite action. See also * Nahm equations * Instanton * Magnetic monopole * Yang–Mills theory In mathematical physics, Yang–Mills theory is a gauge theory based on a special unitary group SU(''N''), or more generally any compact, reductive Lie algebra. Yang–Mills theory seeks to describe the behavior of elementary particles using ... References * * * Differential geometry Mathematical physics {{math-physics-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Peter Kronheimer
Peter Benedict Kronheimer (born 1963) is a British mathematician, known for his work on gauge theory and its applications to 3- and 4-dimensional topology. He is William Caspar Graustein Professor of Mathematics at Harvard University and former chair of the mathematics department. Kronheimer's early work was on gravitational instantons, in particular the classification of hyperkähler 4-manifolds with asymptotical locally Euclidean geometry (ALE spaces), leading to the papers "The construction of ALE spaces as hyper-Kähler quotients" and "A Torelli-type theorem for gravitational instantons." He and Hiraku Nakajima gave a construction of instantons on ALE spaces generalizing the Atiyah– Hitchin– Drinfeld– Manin construction. This constructions identified these moduli spaces as moduli spaces for certain quivers (see "Yang-Mills instantons on ALE gravitational instantons.") He was the initial recipient of the Oberwolfach prize in 1998 on the basis of some of this work. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Floer Homology
In mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is a novel invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer introduced the first version of Floer homology, now called Lagrangian Floer homology, in his proof of the Arnold conjecture in symplectic geometry. Floer also developed a closely related theory for Lagrangian submanifolds of a symplectic manifold. A third construction, also due to Floer, associates homology groups to closed three-dimensional manifolds using the Yang–Mills functional. These constructions and their descendants play a fundamental role in current investigations into the topology of symplectic and contact manifolds as well as (smooth) three- and four-dimensional manifolds. Floer homology is typically defined by associating to the object of interest an infinite-dimensional manifold and a real valued function on it. In the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pseudoholomorphic Curves
In mathematics, specifically in topology and geometry, a pseudoholomorphic curve (or ''J''-holomorphic curve) is a smooth map from a Riemann surface into an almost complex manifold that satisfies the Cauchy–Riemann equation. Introduced in 1985 by Mikhail Gromov, pseudoholomorphic curves have since revolutionized the study of symplectic manifolds. In particular, they lead to the Gromov–Witten invariants and Floer homology, and play a prominent role in string theory. Definition Let X be an almost complex manifold with almost complex structure J. Let C be a smooth Riemann surface (also called a complex curve) with complex structure j. A pseudoholomorphic curve in X is a map f : C \to X that satisfies the Cauchy–Riemann equation :\bar \partial_ f := \frac(df + J \circ df \circ j) = 0. Since J^2 = -1, this condition is equivalent to :J \circ df = df \circ j, which simply means that the differential df is complex-linear, that is, J maps each tangent space :T_xf(C)\subseteq T_xX ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symplectic Geometry
Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry has its origins in the Hamiltonian formulation of classical mechanics where the phase space of certain classical systems takes on the structure of a symplectic manifold. The term "symplectic", introduced by Weyl, is a calque of "complex"; previously, the "symplectic group" had been called the "line complex group". "Complex" comes from the Latin ''com-plexus'', meaning "braided together" (co- + plexus), while symplectic comes from the corresponding Greek ''sym-plektikos'' (συμπλεκτικός); in both cases the stem comes from the Indo-European root *pleḱ- The name reflects the deep connections between complex and symplectic structures. By Darboux's Theorem, symplectic manifolds are isomorphic to the standard symplectic vector space locally, hence ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elliptic Genus
In mathematics, a genus of a multiplicative sequence is a ring homomorphism from the ring of smooth compact manifolds up to the equivalence of bounding a smooth manifold with boundary (i.e., up to suitable cobordism) to another ring, usually the rational numbers, having the property that they are constructed from a sequence of polynomials in characteristic classes that arise as coefficients in formal power series with good multiplicative properties. Definition A genus \varphi assigns a number \Phi(X) to each manifold ''X'' such that # \Phi(X \sqcup Y) = \Phi(X) + \Phi(Y) (where \sqcup is the disjoint union); # \Phi(X \times Y) = \Phi(X)\Phi(Y); # \Phi(X) = 0 if ''X'' is the boundary of a manifold with boundary. The manifolds and manifolds with boundary may be required to have additional structure; for example, they might be oriented, spin, stably complex, and so on (see list of cobordism theories for many more examples). The value \Phi(X) is in some ring, often the ring of rati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Raoul Bott
Raoul Bott (September 24, 1923 – December 20, 2005) was a Hungarian- American mathematician known for numerous basic contributions to geometry in its broad sense. He is best known for his Bott periodicity theorem, the Morse–Bott functions which he used in this context, and the Borel–Bott–Weil theorem. Early life Bott was born in Budapest, Hungary, the son of Margit Kovács and Rudolph Bott. His father was of Austrian descent, and his mother was of Hungarian Jewish descent; Bott was raised a Catholic by his mother and stepfather. Bott grew up in Czechoslovakia and spent his working life in the United States. His family emigrated to Canada in 1938, and subsequently he served in the Canadian Army in Europe during World War II. Career Bott later went to college at McGill University in Montreal, where he studied electrical engineering. He then earned a PhD in mathematics from Carnegie Mellon University in Pittsburgh in 1949. His thesis, titled ''Electrical Network Theory'', ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exotic R4
In mathematics, an exotic \R^4 is a differentiable manifold that is homeomorphic (i.e. shape preserving) but not diffeomorphic (i.e. non smooth) to the Euclidean space \R^4. The first examples were found in 1982 by Michael Freedman and others, by using the contrast between Freedman's theorems about topological 4-manifolds, and Simon Donaldson's theorems about smooth 4-manifolds. There is a continuum of non-diffeomorphic differentiable structures of \R^4, as was shown first by Clifford Taubes. Prior to this construction, non-diffeomorphic smooth structures on spheres exotic sphereswere already known to exist, although the question of the existence of such structures for the particular case of the 4-sphere remained open (and still remains open as of 2022). For any positive integer ''n'' other than 4, there are no exotic smooth structures on \R^n; in other words, if ''n'' ≠ 4 then any smooth manifold homeomorphic to \R^n is diffeomorphic to \R^n. Small exotic R4s An exo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Smooth Structure
In mathematics, a smooth structure on a manifold allows for an unambiguous notion of smooth function. In particular, a smooth structure allows one to perform mathematical analysis on the manifold. Definition A smooth structure on a manifold M is a collection of smoothly equivalent smooth atlases. Here, a smooth atlas for a topological manifold M is an atlas for M such that each transition function is a smooth map, and two smooth atlases for M are smoothly equivalent provided their union is again a smooth atlas for M. This gives a natural equivalence relation on the set of smooth atlases. A smooth manifold is a topological manifold M together with a smooth structure on M. Maximal smooth atlases By taking the union of all atlases belonging to a smooth structure, we obtain a maximal smooth atlas. This atlas contains every chart that is compatible with the smooth structure. There is a natural one-to-one correspondence between smooth structures and maximal smooth atlases. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Donaldson's Theorem
In mathematics, and especially differential topology and gauge theory, Donaldson's theorem states that a definite intersection form of a compact, oriented, smooth manifold of dimension 4 is diagonalisable. If the intersection form is positive (negative) definite, it can be diagonalized to the identity matrix (negative identity matrix) over the . The original version of the theorem required the manifold to be simply connected, but it was later improved to apply to 4-manifolds with any fundamental group. History The theorem was proved by Simon Donaldson. This was a contribution cited for his Fields medal in 1986. Idea of proof Donaldson's proof utilizes the moduli space \mathcal_P of solutions to the anti-self-duality equations on a principal \operatorname(2)-bundle P over the four-manifold X. By the Atiyah–Singer index theorem, the dimension of the moduli space is given by :\dim \mathcal = 8k - 3(1-b_1(X) + b_+(X)), where c_2(P)=k, b_1(X) is the first Betti number of X an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |