Circumconic And Inconic
In Euclidean geometry, a circumconic is a conic section that passes through the three vertices of a triangle, and an inconic is a conic section inscribed in the sides, possibly extended, of a triangle.Weisstein, Eric W. "Inconic." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Inconic.html Suppose are distinct non-collinear points, and let denote the triangle whose vertices are . Following common practice, denotes not only the vertex but also the angle at vertex , and similarly for and as angles in . Let a= , BC, , b=, CA, , c=, AB, , the sidelengths of . In trilinear coordinates, the general circumconic is the locus of a variable point X = x:y:z satisfying an equation :uyz + vzx + wxy = 0, for some point . The isogonal conjugate of each point on the circumconic, other than , is a point on the line :ux + vy + wz = 0. This line meets the circumcircle of in 0,1, or 2 points according as the circumconic is an ellipse, parabola, or hyperbola. ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
![]() |
Euclidean Geometry
Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry, ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. One of those is the parallel postulate which relates to parallel lines on a Euclidean plane. Although many of Euclid's results had been stated earlier,. Euclid was the first to organize these propositions into a logic, logical system in which each result is ''mathematical proof, proved'' from axioms and previously proved theorems. The ''Elements'' begins with plane geometry, still taught in secondary school (high school) as the first axiomatic system and the first examples of mathematical proofs. It goes on to the solid geometry of three dimensions. Much of the ''Elements'' states results of what are now called algebra and number theory ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
Quadrilateral
In Euclidean geometry, geometry a quadrilateral is a four-sided polygon, having four Edge (geometry), edges (sides) and four Vertex (geometry), corners (vertices). The word is derived from the Latin words ''quadri'', a variant of four, and ''latus'', meaning "side". It is also called a tetragon, derived from Greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to other polygons (e.g. pentagon). Since "gon" means "angle", it is analogously called a quadrangle, or 4-angle. A quadrilateral with vertices A, B, C and D is sometimes denoted as \square ABCD. Quadrilaterals are either simple polygon, simple (not self-intersecting), or complex polygon, complex (self-intersecting, or crossed). Simple quadrilaterals are either convex polygon, convex or concave polygon, concave. The Internal and external angle, interior angles of a simple (and Plane (geometry), planar) quadrilateral ''ABCD'' add up to 360 Degree (angle), degrees, that is :\angle A+\angle B+\angle ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Excircle
In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. An excircle or escribed circle of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides. The center of the incircle, called the incenter, can be found as the intersection of the three internal angle bisectors. The center of an excircle is the intersection of the internal bisector of one angle (at vertex , for example) and the external bisectors of the other two. The center of this excircle is called the excenter relative to the vertex , or the excenter of . Because the internal bisector of an angle is perpendicular to its external bisector, it follows that the center of the ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Mandart Inellipse
In geometry, the Mandart inellipse of a triangle is an ellipse that is inscribed within the triangle, tangent In geometry, the tangent line (or simply tangent) to a plane curve at a given point is, intuitively, the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points o ... to its sides at the contact points of its excircles (which are also the vertices of the extouch triangle and the endpoints of the splitters). The Mandart inellipse is named after H. Mandart, who studied it in two papers published in the late 19th century..; . As cited by . Parameters As an inconic, the Mandart inellipse is described by the parameters :x:y:z=\frac:\frac:\frac where ''a'', ''b'', and ''c'' are sides of the given triangle. Related points The center of the Mandart inellipse is the mittenpunkt of the triangle. The three lines connecting the triangle vertices to the opposite points of tangency all meet in ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Incircle
In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. An excircle or escribed circle of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides. The center of the incircle, called the incenter, can be found as the intersection of the three internal angle bisectors. The center of an excircle is the intersection of the internal bisector of one angle (at vertex , for example) and the external bisectors of the other two. The center of this excircle is called the excenter relative to the vertex , or the excenter of . Because the internal bisector of an angle is perpendicular to its external bisector, it follows that the center of t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
![]() |
Nagel Point
In geometry, the Nagel point (named for Christian Heinrich von Nagel) is a triangle center, one of the points associated with a given triangle whose definition does not depend on the placement or scale of the triangle. It is the point of concurrency of all three of the triangle's splitters. Construction Given a triangle , let be the extouch points in which the -excircle meets line , the -excircle meets line , and the -excircle meets line , respectively. The lines concur in the Nagel point of triangle . Another construction of the point is to start at and trace around triangle half its perimeter, and similarly for and . Because of this construction, the Nagel point is sometimes also called the bisected perimeter point, and the segments are called the triangle's splitters. There exists an easy construction of the Nagel point. Starting from each vertex of a triangle, it suffices to carry twice the length of the opposite edge. We obtain three lines which concur at ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
![]() |
Feuerbach Hyperbola
Ludwig Andreas von Feuerbach (; ; 28 July 1804 – 13 September 1872) was a German anthropologist and philosopher, best known for his book '' The Essence of Christianity'', which provided a critique of Christianity that strongly influenced generations of later thinkers, including Charles Darwin, Karl Marx, Sigmund Freud, Friedrich Engels, Mikhail Bakunin, Richard Wagner, Frederick Douglass, and Friedrich Nietzsche. An associate of Young Hegelian circles, Feuerbach advocated anthropological materialism. Many of his philosophical writings offered a critical analysis of religion. His thought was influential in the development of historical materialism,Nicholas Churchich, ''Marxism and Alienation'', Fairleigh Dickinson University Press, 1990, p. 57: "Although Marx has rejected Feuerbach's abstract materialism," Lenin says that Feuerbach's views "are consistently materialist," implying that Feuerbach's conception of causality is entirely in line with dialectical materialism." wher ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
Circumcenter
In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center. More generally, an -sided polygon with all its vertices on the same circle, also called the circumscribed circle, is called a cyclic polygon, or in the special case , a cyclic quadrilateral. All rectangles, isosceles trapezoids, right kites, and regular polygons are cyclic, but not every polygon is. Straightedge and compass construction The circumcenter of a triangle can be constructed by drawing any two of the three perpendicular bisectors. For three non-collinear points, these two lines cannot be parallel, and the circumcenter is the point where they cross. Any point on the bisector is equidistant from th ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Nine-point Circle
In geometry, the nine-point circle is a circle that can be constructed for any given triangle. It is so named because it passes through nine significant concyclic points defined from the triangle. These nine points are: * The midpoint of each side of the triangle * The foot of each altitude * The midpoint of the line segment from each vertex of the triangle to the orthocenter (where the three altitudes meet; these line segments lie on their respective altitudes). The nine-point circle is also known as Feuerbach's circle (after Karl Wilhelm Feuerbach), Euler's circle (after Leonhard Euler), Terquem's circle (after Olry Terquem), the six-points circle, the twelve-points circle, the -point circle, the medioscribed circle, the mid circle or the circum-midcircle. Its center is the nine-point center of the triangle. Nine Significant Points of Nine Point Circle The diagram above shows the nine significant points of the nine-point circle. Points are the midpoints of the thre ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Václav Jeřábek
Václav Jeřábek (1845–1931) was a Czech mathematician, specialized in constructive geometry. Life and work Jeřábek studied at the lower school of Pardubice and at the higher school of Písek, then he was to Vienna and studied at Imperial and Royal Polytechnic Institute where he graduated. Although he participated in several leading intellectual circles of Vienna, he remained a Czech with a clear view of patriotism. He began his teaching at the ''Realschule'' of Litomyšl (1870), being transferred two years after to the ''Realschule'' of Telč. In 1881, he was appointed professor of the ''Czech Realschule'' in Brno, and became its director in 1901. He retired in 1907, and suffering of a cataract, he died almost completely blind, MacTutor History of Mathematics. in 1931. Jeřábek was one of the men who kept the Czech geometry at the scientific level. He published scientific articles in Czech, German and French, and longer lectures. He is well remembered by the Jerabek hyp ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Orthocenter
The orthocenter of a triangle, usually denoted by , is the point (geometry), point where the three (possibly extended) altitude (triangle), altitudes intersect. The orthocenter lies inside the triangle if and only if the triangle is acute triangle, acute. For a right triangle, the orthocenter coincides with the vertex (geometry), vertex at the right angle. For an equilateral triangle, all triangle center, triangle centers (including the orthocenter) coincide at its centroid. Formulation Let denote the vertices and also the angles of the triangle, and let a = \left, \overline\, b = \left, \overline\, c = \left, \overline\ be the side lengths. The orthocenter has trilinear coordinatesClark Kimberling's Encyclopedia of Triangle Centers \begin & \sec A:\sec B:\sec C \\ &= \cos A-\sin B \sin C:\cos B-\sin C \sin A:\cos C-\sin A\sin B, \end and Barycentric coordinates (mathematics), barycentric coordinates \begin & (a^2+b^2-c^2)(a^2-b^2+c^2) : (a^2+b^2-c^2)(-a^2+b^2+c^2) : (a^2- ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |
|
Kiepert Conics
In triangle geometry, the Kiepert conics are two special conics associated with the reference triangle. One of them is a hyperbola, called the Kiepert hyperbola and the other is a parabola, called the Kiepert parabola. The Kiepert conics are defined as follows: :If the three triangles A^\prime BC, AB^\prime C and ABC^\prime, constructed on the sides of a triangle ABC as bases, are similar, isosceles and similarly situated, then the triangles ABC and A^\prime B^\prime C^\prime are in perspective. As the base angle of the isosceles triangles varies between -\pi/2 and \pi/2, the locus of the center of perspectivity of the triangles ABC and A^\prime B^\prime C^\prime is a hyperbola called the Kiepert hyperbola and the envelope of their axis of perspectivity is a parabola called the Kiepert parabola. It has been proved that the Kiepert hyperbola is the hyperbola passing through the vertices, the centroid and the orthocenter of the reference triangle and the Kiepert parabola is the p ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] [Amazon] |