Circular Path
   HOME



picture info

Circular Path
A circular arc is the arc (geometry), arc of a circle between a pair of distinct Point (geometry), points. If the two points are not directly opposite each other, one of these arcs, the minor arc, subtended angle, subtends an angle at the center of the circle that is less than Pi, radians (180 Degree (angle), degrees); and the other arc, the major arc, subtends an angle greater than radians. The arc of a circle is defined as the part or segment of the circumference of a circle. A straight line that connects the two ends of the arc is known as a ''chord (geometry), chord'' of a circle. If the length of an arc is exactly half of the circle, it is known as a ''semicircle, semicircular arc''. Length The length (more precisely, arc length) of an arc of a circle with radius ''r'' and subtending an angle ''θ'' (measured in radians) with the circle center — i.e., the central angle — is : L = \theta r. This is because :\frac=\frac. Substituting in the circumference :\frac=\fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Circle Arc
A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting two points on the circle and passing through the centre is called the diameter. A circle bounds a region of the plane called a Disk (mathematics), disc. The circle has been known since before the beginning of recorded history. Natural circles are common, such as the full moon or a slice of round fruit. The circle is the basis for the wheel, which, with related inventions such as gears, makes much of modern machinery possible. In mathematics, the study of the circle has helped inspire the development of geometry, astronomy and calculus. Terminology * Annulus (mathematics), Annulus: a ring-shaped object, the region bounded by two concentric circles. * Circular arc, Arc: any Connected ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Power Of A Point
In elementary plane geometry, the power of a point is a real number that reflects the relative distance of a given point from a given circle. It was introduced by Jakob Steiner in 1826. Specifically, the power \Pi(P) of a point P with respect to a circle c with center O and radius r is defined by : \Pi(P)=, PO, ^2 - r^2. If P is ''outside'' the circle, then \Pi(P)>0, if P is ''on'' the circle, then \Pi(P)=0 and if P is ''inside'' the circle, then \Pi(P)<0. Due to the Pythagorean theorem the number \Pi(P) has the simple geometric meanings shown in the diagram: For a point P outside the circle \Pi(P) is the squared tangential distance , PT, of point P to the circle c. Points with equal power, isolines of \Pi(P), are circles concentric to circle c. Steiner used the power of a point for proofs of several statements on circles, for example: * Determination of a circle, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE