Circuit Of A Matroid
In mathematics, a basis of a matroid is a maximal independent set of the matroid—that is, an independent set that is not contained in any other independent set. Examples As an example, consider the matroid over the ground-set R2 (the vectors in the two-dimensional Euclidean plane), with the following independent sets: It has two bases, which are the sets , . These are the only independent sets that are maximal under inclusion. The basis has a specialized name in several specialized kinds of matroids: * In a graphic matroid, where the independent sets are the forests, the bases are called the '' spanning forests'' of the graph. * In a transversal matroid, where the independent sets are endpoints of matchings in a given bipartite graph, the bases are called ''transversals''. * In a linear matroid, where the independent sets are the linearly-independent sets of vectors in a given vector-space, the bases are just called ''bases'' of the vector space. Hence, the concept ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Matroid
In combinatorics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid Axiomatic system, axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or ''flats''. In the language of partially ordered sets, a finite simple matroid is equivalent to a geometric lattice. Matroid theory borrows extensively from the terms used in both linear algebra and graph theory, largely because it is the abstraction of various notions of central importance in these fields. Matroids have found applications in geometry, topology, combinatorial optimization, network theory, and coding theory. Definition There are many Cryptomorphism, equivalent ways to define a (finite) matroid. Independent sets In terms of independence, a finite matroid M is a pair (E, \mathcal), where E is a finite set (called the ''gro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Partition Matroid
In mathematics, a partition matroid or partitional matroid is a matroid that is a direct sum of uniform matroids. It is defined over a base set in which the elements are partitioned into different categories. For each category, there is a ''capacity constraint'' - a maximum number of allowed elements from this category. The independent sets of a partition matroid are exactly the sets in which, for each category, the number of elements from this category is at most the category capacity. Formal definition Let C_i be a collection of disjoint sets ("categories"). Let d_i be integers with 0\le d_i\le , C_i, ("capacities"). Define a subset I\subseteq \bigcup_i C_i to be "independent" when, for every index i, , I\cap C_i, \le d_i. The sets satisfying this condition form the independent sets of a matroid, called a partition matroid. The sets C_i are called the categories or the blocks of the partition matroid. A basis of the partition matroid is a set whose intersection with every ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dual Matroid
Dual or Duals may refer to: Paired/two things * Dual (mathematics), a notion of paired concepts that mirror one another ** Dual (category theory), a formalization of mathematical duality *** see more cases in :Duality theories * Dual number, a number system used in automatic differentiation * Dual (grammatical number), a grammatical category used in some languages * Dual county, a Gaelic games county which competes in both Gaelic football and hurling * Dual diagnosis, a psychiatric diagnosis of co-occurrence of substance abuse and a mental problem * Dual fertilization, simultaneous application of a P-type and N-type fertilizer * Dual impedance, electrical circuits that are the dual of each other * Dual SIM cellphone supporting use of two SIMs * Aerochute International Dual a two-seat Australian powered parachute design Acronyms and other uses * Dual (brand), a manufacturer of Hifi equipment * DUAL (cognitive architecture), an artificial intelligence design model * DUA ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dimension (vector Space)
In mathematics, the dimension of a vector space ''V'' is the cardinality (i.e., the number of vectors) of a Basis (linear algebra), basis of ''V'' over its base Field (mathematics), field. p. 44, §2.36 It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to distinguish it from other types of dimension. For every vector space there exists a basis, and all bases of a vector space have equal cardinality; as a result, the dimension of a vector space is uniquely defined. We say V is if the dimension of V is wiktionary:finite, finite, and if its dimension is infinity, infinite. The dimension of the vector space V over the field F can be written as \dim_F(V) or as [V : F], read "dimension of V over F". When F can be inferred from context, \dim(V) is typically written. Examples The vector space \R^3 has \left\ as a standard basis, and therefore \dim_(\R^3) = 3. More generally, \dim_(\R^n) = n, and even more generally, \dim_(F^n) = n for any Field (mathe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Regular Matroid
In mathematics, a regular matroid is a matroid that can be represented over all fields. Definition A matroid is defined to be a family of subsets of a finite set, satisfying certain axioms. The sets in the family are called "independent sets". One of the ways of constructing a matroid is to select a finite set of vectors in a vector space, and to define a subset of the vectors to be independent in the matroid when it is linearly independent in the vector space. Every family of sets constructed in this way is a matroid, but not every matroid can be constructed in this way, and the vector spaces over different fields lead to different sets of matroids that can be constructed from them. A matroid M is regular when, for every field F, M can be represented by a system of vectors over F.. Properties If a matroid is regular, so is its dual matroid, and so is every one of its minors. Every direct sum of regular matroids remains regular. Every graphic matroid (and every co-graphic matro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Base-orderable Matroid
In mathematics, a base-orderable matroid is a matroid that has the following additional property, related to the bases of the matroid. * For any two bases A and B there exists a feasible exchange bijection, defined as a bijection ''f'' from ''A'' to B, such that for every a\in A\setminus B, both (A \setminus \) \cup \ and (B \setminus \) \cup \ are bases.The property was introduced by Brualdi and Scrimger. A strongly-base-orderable matroid has the following stronger property:For any two bases A and B, there is a strong feasible exchange bijection, defined as a bijection ''f'' from ''A'' to B, such that for every X\subseteq A, both (A \setminus X) \cup f(X) and (B \setminus f(X)) \cup X are bases. The property in context Base-orderability imposes two requirements on the function ''f:'' # It should be a bijection; # For every a\in A\setminus B, both (A \setminus \) \cup \ and (B \setminus \) \cup \ should be bases. Each of these properties alone is easy to satisfy: # All bases o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
YouTube
YouTube is an American social media and online video sharing platform owned by Google. YouTube was founded on February 14, 2005, by Steve Chen, Chad Hurley, and Jawed Karim who were three former employees of PayPal. Headquartered in San Bruno, California, it is the second-most-visited website in the world, after Google Search. In January 2024, YouTube had more than 2.7billion monthly active users, who collectively watched more than one billion hours of videos every day. , videos were being uploaded to the platform at a rate of more than 500 hours of content per minute, and , there were approximately 14.8billion videos in total. On November 13, 2006, YouTube was purchased by Google for $1.65 billion (equivalent to $ billion in ). Google expanded YouTube's business model of generating revenue from advertisements alone, to offering paid content such as movies and exclusive content produced by and for YouTube. It also offers YouTube Premium, a paid subs ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Free Matroid
In mathematics, the free matroid over a given ground-set is the matroid in which the independent sets are all subsets of . It is a special case of a uniform matroid; specifically, when has cardinality n, it is the uniform matroid U^_. The unique basis of this matroid is the ground-set itself, . Among matroids on , the free matroid on has the most independent sets, the highest rank, and the fewest circuits. Every free matroid with a ground set of size is the graphic matroid of an -edge forest A forest is an ecosystem characterized by a dense ecological community, community of trees. Hundreds of definitions of forest are used throughout the world, incorporating factors such as tree density, tree height, land use, legal standing, .... Free extension of a matroid The free extension of a matroid M by some element e\not\in M, denoted M+e, is a matroid whose elements are the elements of M plus the new element e, and: *Its circuits are the circuits of M plus the sets B\c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Uniform Matroid
In mathematics, a uniform matroid is a matroid in which the ''independent sets'' are exactly the sets containing at most ''r'' elements, for some fixed integer ''r''. An alternative definition is that every permutation of the elements is a symmetry. Definition The uniform matroid U^r_n is defined over a set of n elements. A subset of the elements is independent if and only if it contains at most r elements. A subset is a basis if it has exactly r elements, and it is a circuit if it has exactly r+1 elements. The rank of a subset S is \min(, S, ,r) and the rank of the matroid is r. A matroid of rank r is uniform if and only if all of its circuits have exactly r+1 elements. The matroid U^2_n is called the n-point line. Duality and minors The dual matroid of the uniform matroid U^r_n is another uniform matroid U^_n. A uniform matroid is self-dual if and only if r=n/2. Every minor of a uniform matroid is uniform. Restricting a uniform matroid U^r_n by one element (as long as r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graphic Matroid
In the mathematical theory of Matroid theory, matroids, a graphic matroid (also called a cycle matroid or polygon matroid) is a matroid whose independent sets are the tree (graph theory), forests in a given finite undirected graph. The dual matroids of graphic matroids are called co-graphic matroids or bond matroids. A matroid that is both graphic and co-graphic is sometimes called a planar matroid (but this should not be confused with matroids of rank 3, which generalize planar point configurations); these are exactly the graphic matroids formed from planar graphs. Definition A matroid may be defined as a family of finite sets (called the "independent sets" of the matroid) that is closed under subsets and that satisfies the "exchange property": if sets A and B are both independent, and A is larger than B, then there is an element x\in A\setminus B such that B\cup\ remains independent. If G is an undirected graph, and F is the family of sets of edges that form forests in G, then ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Basis (linear Algebra)
In mathematics, a Set (mathematics), set of elements of a vector space is called a basis (: bases) if every element of can be written in a unique way as a finite linear combination of elements of . The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to . The elements of a basis are called . Equivalently, a set is a basis if its elements are linearly independent and every element of is a linear combination of elements of . In other words, a basis is a linearly independent spanning set. A vector space can have several bases; however all the bases have the same number of elements, called the dimension (vector space), dimension of the vector space. This article deals mainly with finite-dimensional vector spaces. However, many of the principles are also valid for infinite-dimensional vector spaces. Basis vectors find applications in the study of crystal structures and frame of reference, frames of reference. De ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Independence
In the theory of vector spaces, a set (mathematics), set of vector (mathematics), vectors is said to be if there exists no nontrivial linear combination of the vectors that equals the zero vector. If such a linear combination exists, then the vectors are said to be . These concepts are central to the definition of Dimension (vector space), dimension. A vector space can be of finite dimension or infinite dimension depending on the maximum number of linearly independent vectors. The definition of linear dependence and the ability to determine whether a subset of vectors in a vector space is linearly dependent are central to determining the dimension of a vector space. Definition A sequence of vectors \mathbf_1, \mathbf_2, \dots, \mathbf_k from a vector space is said to be ''linearly dependent'', if there exist Scalar (mathematics), scalars a_1, a_2, \dots, a_k, not all zero, such that :a_1\mathbf_1 + a_2\mathbf_2 + \cdots + a_k\mathbf_k = \mathbf, where \mathbf denotes ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |