HOME





Chihara–Ismail Polynomials
In mathematics, the Chihara–Ismail polynomials are a family of orthogonal polynomials introduced by , generalizing the van Doorn polynomials introduced by and the Karlin–McGregor polynomials. They have a rather unusual measure, which is discrete except for a single limit point In mathematics, a limit point, accumulation point, or cluster point of a set S in a topological space X is a point x that can be "approximated" by points of S in the sense that every neighbourhood of x with respect to the topology on X also conta ... at 0 with jump 0, and is non-symmetric, but whose support has an infinite number of both positive and negative points. References * * Orthogonal polynomials {{polynomial-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orthogonal Polynomials
In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product. The most widely used orthogonal polynomials are the classical orthogonal polynomials, consisting of the Hermite polynomials, the Laguerre polynomials and the Jacobi polynomials. The Gegenbauer polynomials form the most important class of Jacobi polynomials; they include the Chebyshev polynomials, and the Legendre polynomials as special cases. The field of orthogonal polynomials developed in the late 19th century from a study of continued fractions by P. L. Chebyshev and was pursued by A. A. Markov and T. J. Stieltjes. They appear in a wide variety of fields: numerical analysis ( quadrature rules), probability theory, representation theory (of Lie groups, quantum groups, and related objects), enumerative combinatorics, algebraic combinatorics, mathematical physics (the theory of r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Measure (mathematics)
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures ( length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel, Henri Lebesgue, Nikolai Luzin, Johann Radon, Co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete Measure
In mathematics, more precisely in measure theory, a measure on the real line is called a discrete measure (in respect to the Lebesgue measure) if it is concentrated on an at most countable set. The support need not be a discrete set. Geometrically, a discrete measure (on the real line, with respect to Lebesgue measure) is a collection of point masses. Definition and properties A measure \mu defined on the Lebesgue measurable sets of the real line with values in , \infty/math> is said to be discrete if there exists a (possibly finite) sequence of numbers : s_1, s_2, \dots \, such that : \mu(\mathbb R\backslash\)=0. The simplest example of a discrete measure on the real line is the Dirac delta function \delta. One has \delta(\mathbb R\backslash\)=0 and \delta(\)=1. More generally, if s_1, s_2, \dots is a (possibly finite) sequence of real numbers, a_1, a_2, \dots is a sequence of numbers in , \infty/math> of the same length, one can consider the Dirac measures ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Limit Point
In mathematics, a limit point, accumulation point, or cluster point of a set S in a topological space X is a point x that can be "approximated" by points of S in the sense that every neighbourhood of x with respect to the topology on X also contains a point of S other than x itself. A limit point of a set S does not itself have to be an element of S. There is also a closely related concept for sequences. A cluster point or accumulation point of a sequence (x_n)_ in a topological space X is a point x such that, for every neighbourhood V of x, there are infinitely many natural numbers n such that x_n \in V. This definition of a cluster or accumulation point of a sequence generalizes to nets and filters. The similarly named notion of a (respectively, a limit point of a filter, a limit point of a net) by definition refers to a point that the sequence converges to (respectively, the filter converges to, the net converges to). Importantly, although "limit point of a set" is syn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]