Cellular Homology
In mathematics, cellular homology in algebraic topology is a homology theory for the category of CW-complexes. It agrees with singular homology, and can provide an effective means of computing homology modules. Definition If X is a CW-complex with ''n''-skeleton X_ , the cellular-homology modules are defined as the homology groups ''Hi'' of the cellular chain complex : \cdots \to (X_,X_) \to (X_,X_) \to (X_,X_) \to \cdots, where X_ is taken to be the empty set. The group : (X_,X_) is free abelian, with generators that can be identified with the n -cells of X . Let e_^ be an n -cell of X , and let \chi_^: \partial e_^ \cong \mathbb^ \to X_ be the attaching map. Then consider the composition : \chi_^: \mathbb^ \, \stackrel \, \partial e_^ \, \stackrel \, X_ \, \stackrel \, X_ / \left( X_ \setminus e_^ \right) \, \stackr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Projective Space
In mathematics, real projective space, denoted or is the topological space of lines passing through the origin 0 in the real space It is a compact, smooth manifold of dimension , and is a special case of a Grassmannian space. Basic properties Construction As with all projective spaces, is formed by taking the quotient of \R^\setminus \ under the equivalence relation for all real numbers . For all in \R^\setminus \ one can always find a such that has norm 1. There are precisely two such differing by sign. Thus can also be formed by identifying antipodal points of the unit -sphere, , in \R^. One can further restrict to the upper hemisphere of and merely identify antipodal points on the bounding equator. This shows that is also equivalent to the closed -dimensional disk, , with antipodal points on the boundary, \partial D^n=S^, identified. Low-dimensional examples * is called the real projective line, which is topologically equivalent to a circle. Thinking ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Albrecht Dold
Albrecht Dold (5 August 1928 – 26 September 2011) was a German mathematician specializing in algebraic topology who proved the Dold–Thom theorem, the Dold–Kan correspondence, and introduced Dold manifolds, Dold–Puppe stabilization, and Dold fibrations. Life Albrecht Dold was born in Triberg, and studied mathematics and physics at Heidelberg University, earning a Ph.D. degree in 1954 under the direction of Herbert Seifert. He visited the Institute for Advanced Study in Princeton in 1956–58, and taught at Columbia University in 1960–62 and at the University of Zürich in 1962–63. In 1963 he returned to Heidelberg, where he stayed most of his career, till his retirement in 1996. Dold's work in algebraic topology, in particular, his work on Fixed-point theorem, fixed-point theory has made him known in economics as well as mathematics. His book "Lectures on Algebraic Topology" is a standard reference among economists as well as mathematicians. He had 19 doctoral stu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Relative Homology
In algebraic topology, a branch of mathematics, the (singular) homology of a topological space relative to a subspace is a construction in singular homology, for pairs of spaces. The relative homology is useful and important in several ways. Intuitively, it helps determine what part of an absolute homology group comes from which subspace. Definition Given a subspace A\subseteq X, one may form the short exact sequence :0\to C_\bullet(A) \to C_\bullet(X)\to C_\bullet(X) /C_\bullet(A) \to 0 , where C_\bullet(X) denotes the singular chains on the space ''X''. The boundary map on C_\bullet(X) descends to C_\bullet(A) and therefore induces a boundary map \partial'_\bullet on the quotient. If we denote this quotient by C_n(X,A):=C_n(X)/C_n(A), we then have a complex :\cdots\longrightarrow C_n(X,A) \xrightarrow C_(X,A) \longrightarrow \cdots . By definition, the th relative homology group of the pair of spaces (X,A) is :H_n(X,A) := \ker\partial'_n/\operatorname\partial'_. One s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Betti Number
In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of ''n''-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplicial complexes or CW complexes), the sequence of Betti numbers is 0 from some point onward (Betti numbers vanish above the dimension of a space), and they are all finite. The ''n''th Betti number represents the rank of the ''n''th homology group, denoted ''H''''n'', which tells us the maximum number of cuts that can be made before separating a surface into two pieces or 0-cycles, 1-cycles, etc. For example, if H_n(X) \cong 0 then b_n(X) = 0, if H_n(X) \cong \mathbb then b_n(X) = 1, if H_n(X) \cong \mathbb \oplus \mathbb then b_n(X) = 2, if H_n(X) \cong \mathbb \oplus \mathbb\oplus \mathbb then b_n(X) = 3, etc. Note that only the ranks of infinite groups are considered, so for example if H_n(X) \cong \mathbb^k \oplus \mathbb/(2), where \mat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Euler Characteristic
In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by \chi (Greek alphabet, Greek lower-case letter chi (letter), chi). The Euler characteristic was originally defined for polyhedron, polyhedra and used to prove various theorems about them, including the classification of the Platonic solids. It was stated for Platonic solids in 1537 in an unpublished manuscript by Francesco Maurolico. Leonhard Euler, for whom the concept is named, introduced it for convex polyhedra more generally but failed to rigorously prove that it is an invariant. In modern mathematics, the Euler characteristic arises from homology (mathematics), homology and, more abstractly, homological algebra. Polyhedra The Euler characteristic was ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Extraordinary Homology Theory
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory. From its start in topology, this idea became a dominant method in the mathematics of the second half of the twentieth century. From the initial idea of homology as a method of constructing algebraic invariants of topological spaces, the range of applications of homology and cohomology theories has spread throughout geometry and algebra. The terminology tends to hide the fact that cohomology, a contravariant theory, is more natural than homology in many applications. At a basic level, this has to do with ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Atiyah–Hirzebruch Spectral Sequence
In mathematics, the Atiyah–Hirzebruch spectral sequence is a spectral sequence for calculating generalized cohomology, introduced by in the special case of topological K-theory. For a CW complex X and a generalized cohomology theory E^\bullet, it relates the generalized cohomology groups : E^i(X) with 'ordinary' cohomology groups H^j with coefficients in the generalized cohomology of a point. More precisely, the E_2 term of the spectral sequence is H^p(X;E^q(pt)), and the spectral sequence converges conditionally to E^(X). Atiyah and Hirzebruch pointed out a generalization of their spectral sequence that also generalizes the Serre spectral sequence, and reduces to it in the case where E=H_. It can be derived from an exact couple that gives the E_1 page of the Serre spectral sequence, except with the ordinary cohomology groups replaced with E. In detail, assume X to be the total space of a Serre fibration with fibre F and base space B. The filtration of B by its n-skel ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complex Projective Space
In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a real projective space label the lines through the origin of a real Euclidean space, the points of a complex projective space label the ''complex plane, complex'' lines through the origin of a complex Euclidean space (see #Introduction, below for an intuitive account). Formally, a complex projective space is the space of complex lines through the origin of an (''n''+1)-dimensional complex vector space. The space is denoted variously as P(C''n''+1), P''n''(C) or CP''n''. When , the complex projective space CP1 is the Riemann sphere, and when , CP2 is the complex projective plane (see there for a more elementary discussion). Complex projective space was first introduced by as an instance of what was then known as the "geometry of position", a notion originally due to Lazare Carnot, a kind of synthetic geometry that included other proje ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology ". Springer Science+Business Media. In 1964, Springer expanded its business internationally, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cellular Map
In algebraic topology, the cellular approximation theorem states that a map between CW-complexes can always be taken to be of a specific type. Concretely, if ''X'' and ''Y'' are CW-complexes, and ''f'' : ''X'' → ''Y'' is a continuous map, then ''f'' is said to be ''cellular'', if ''f'' takes the ''n''-skeleton of ''X'' to the ''n''-skeleton of ''Y'' for all ''n'', i.e. if f(X^n)\subseteq Y^n for all ''n''. The content of the cellular approximation theorem is then that any continuous map ''f'' : ''X'' → ''Y'' between CW-complexes ''X'' and ''Y'' is homotopic to a cellular map, and if ''f'' is already cellular on a subcomplex ''A'' of ''X'', then we can furthermore choose the homotopy to be stationary on ''A''. From an algebraic topological viewpoint, any map between CW-complexes can thus be taken to be cellular. Idea of proof The proof can be given by induction after ''n'', with the statement that ''f'' is cellular on the skeleton ''X''''n''. For the base case n=0, notice tha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Functor
In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous function, continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied. The words ''category'' and ''functor'' were borrowed by mathematicians from the philosophers Aristotle and Rudolf Carnap, respectively. The latter used ''functor'' in a Linguistics, linguistic context; see function word. Definition Let ''C'' and ''D'' be category (mathematics), categories. A functor ''F'' from ''C'' to ''D'' is a mapping that * associates each Mathematical object, object X in ''C'' to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |