Cartesian Functor
   HOME





Cartesian Functor
In mathematics, especially homotopy theory, a cartesian fibration is, roughly, a map so that every lift exists that is a final object among all lifts. For example, the forgetful functor :\textrm \to \textrm from the category of pairs (X, F) of schemes and quasi-coherent sheaves on them is a cartesian fibration (see ). In fact, the Grothendieck construction says all cartesian fibrations are of this type; i.e., they simply forget extra data. See also: fibred category, prestack. The dual of a cartesian fibration is called an op-fibration; in particular, not a cocartesian fibration. A right fibration between simplicial sets is an example of a cartesian fibration. Definition Given a functor \pi : C \to S, a morphism f : x \to y in C is called \pi-cartesian or simply cartesian if the natural map :(f_*, \pi) : \operatorname(z, x) \to \operatorname(z, y) \times_ \operatorname(\pi(z), \pi(x)) is bijective. Explicitly, thus, f : x \to y is cartesian if given *g: z \to y and *u : \pi(z) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homotopy Theory
In mathematics, homotopy theory is a systematic study of situations in which Map (mathematics), maps can come with homotopy, homotopies between them. It originated as a topic in algebraic topology, but nowadays is learned as an independent discipline. Applications to other fields of mathematics Besides algebraic topology, the theory has also been used in other areas of mathematics such as: * Algebraic geometry (e.g., A1 homotopy theory, A1 homotopy theory) * Category theory (specifically the study of higher category theory, higher categories) Concepts Spaces and maps In homotopy theory and algebraic topology, the word "space" denotes a topological space. In order to avoid Pathological (mathematics), pathologies, one rarely works with arbitrary spaces; instead, one requires spaces to meet extra constraints, such as being Category of compactly generated weak Hausdorff spaces, compactly generated weak Hausdorff or a CW complex. In the same vein as above, a "Map (mathematics), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Final Object
In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): is terminal if for every object in there exists exactly one morphism . Initial objects are also called coterminal or universal, and terminal objects are also called final. If an object is both initial and terminal, it is called a zero object or null object. A pointed category is one with a zero object. A strict initial object is one for which every morphism into is an isomorphism. Examples * The empty set is the unique initial object in Set, the category of sets. Every one-element set ( singleton) is a terminal object in this category; there are no zero objects. Similarly, the empty space is the unique initial object in Top, the category of topological spaces and every one-point space is a terminal object in this category. * In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Forgetful Functor
In mathematics, more specifically in the area of category theory, a forgetful functor (also known as a stripping functor) "forgets" or drops some or all of the input's structure or properties mapping to the output. For an algebraic structure of a given signature, this may be expressed by curtailing the signature: the new signature is an edited form of the old one. If the signature is left as an empty list, the functor is simply to take the underlying set of a structure. Because many structures in mathematics consist of a set with an additional added structure, a forgetful functor that maps to the underlying set is the most common case. Overview As an example, there are several forgetful functors from the category of commutative rings. A ( unital) ring, described in the language of universal algebra, is an ordered tuple (R,+,\times,a,0,1) satisfying certain axioms, where + and \times are binary functions on the set R, a is a unary operation corresponding to additive inverse, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scheme (mathematics)
In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations and define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise '' Éléments de géométrie algébrique'' (EGA); one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne). Strongly based on commutative algebra, scheme theory allows a systematic use of methods of topology and homological algebra. Scheme theory also unifies algebraic geometry with much of number theory, which eventually led to Wiles's proof of Fermat's Last Theorem. Schemes elaborate the fundamental idea that an a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasi-coherent Sheaves
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information. Coherent sheaves can be seen as a generalization of vector bundles. Unlike vector bundles, they form an abelian category, and so they are closed under operations such as taking kernels, images, and cokernels. The quasi-coherent sheaves are a generalization of coherent sheaves and include the locally free sheaves of infinite rank. Coherent sheaf cohomology is a powerful technique, in particular for studying the sections of a given coherent sheaf. Definitions A quasi-coherent sheaf on a ringed space (X, \mathcal O_X) is a sheaf \mathcal F of \mathcal O_X- modules that has a local presentation, that is, every point in X has an open neighborhood U in which there is an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Grothendieck Construction
In category theory, a branch of mathematics, the category of elements of a presheaf is a category associated to that presheaf whose objects are the elements of sets in the presheaf. It and its generalization are also known as the Grothendieck construction (named after Alexander Grothendieck) especially in the theory of descent, in the theory of stacks, and in fibred category theory. The Grothendieck construction is an instance of straightening (or rather unstraightening). Significance In categorical logic, the construction is used to model the relationship between a type theory and a logic over that type theory, and allows for the translation of concepts from indexed category theory into fibred category theory, such as Lawvere's concept of hyperdoctrine. The category of elements of a simplicial set is fundamental in simplicial homotopy theory, a branch of algebraic topology. More generally, the category of elements plays a key role in the proof that every weighted colimit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fibred Category
Fibred categories (or fibered categories) are abstract entities in mathematics used to provide a general framework for descent theory. They formalise the various situations in geometry and algebra in which ''inverse images'' (or ''pull-backs'') of objects such as vector bundles can be defined. As an example, for each topological space there is the category of vector bundles on the space, and for every continuous map from a topological space ''X'' to another topological space ''Y'' is associated the pullback functor taking bundles on ''Y'' to bundles on ''X''. Fibred categories formalise the system consisting of these categories and inverse image functors. Similar setups appear in various guises in mathematics, in particular in algebraic geometry, which is the context in which fibred categories originally appeared. Fibered categories are used to define stacks, which are fibered categories (over a site) with "descent". Fibrations also play an important role in categorical semantics of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prestack
In algebraic geometry, a prestack ''F'' over a category ''C'' equipped with some Grothendieck topology is a category together with a functor ''p'': ''F'' → ''C'' satisfying a certain lifting condition and such that (when the fibers are groupoids) locally isomorphic objects are isomorphic. A stack is a prestack with effective descents, meaning local objects may be patched together to become a global object. Prestacks that appear in nature are typically stacks but some naively constructed prestacks (e.g., groupoid scheme or the prestack of projectivized vector bundles) may not be stacks. Prestacks may be studied on their own or passed to stacks. Since a stack is a prestack, all the results on prestacks are valid for stacks as well. Throughout the article, we work with a fixed base category ''C''; for example, ''C'' can be the category of all schemes over some fixed scheme equipped with some Grothendieck topology. Informal definition Let ''F'' be a category and suppose it is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Right Fibration
In mathematics, especially in homotopy theory, a left fibration of simplicial sets is a map that has the right lifting property with respect to the horn inclusions \Lambda^n_i \subset \Delta^n, 0 \le i < n. A right fibration is defined similarly with the condition 0 < i \le n. A is one with the right lifting property with respect to every horn inclusion; hence, a Kan fibration is exactly a map that is both a left and right fibration.


Examples

A right fibration is a such that each fiber is a . In particular, a
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Simplicial Set
In mathematics, a simplicial set is a sequence of sets with internal order structure ( abstract simplices) and maps between them. Simplicial sets are higher-dimensional generalizations of directed graphs. Every simplicial set gives rise to a "nice" topological space, known as its geometric realization. This realization consists of geometric simplices, glued together according to the rules of the simplicial set. Indeed, one may view a simplicial set as a purely combinatorial construction designed to capture the essence of a topological space for the purposes of homotopy theory. Specifically, the category of simplicial sets carries a natural model structure, and the corresponding homotopy category is equivalent to the familiar homotopy category of topological spaces. Formally, a simplicial set may be defined as a contravariant functor from the simplex category to the category of sets. Simplicial sets were introduced in 1950 by Samuel Eilenberg and Joseph A. Zilber. Simplic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


(2, 1)-category
In category theory in mathematics, a 2-category is a category with "morphisms between morphisms", called 2-morphisms. A basic example is the category Cat of all (small) categories, where a 2-morphism is a natural transformation between functors. The concept of a strict 2-category was first introduced by Charles Ehresmann in his work on enriched categories in 1965. The more general concept of bicategory (or weak 2-category), where composition of morphisms is associative only up to a 2-isomorphism, was introduced in 1967 by Jean Bénabou. A (2, 1)-category is a 2-category where each 2-morphism is invertible. Definitions A strict 2-category By definition, a strict 2-category ''C'' consists of the data: * a class of 0-''cells'', * for each pairs of 0-cells a, b, a set \operatorname(a, b) called the set of 1-''cells'' from a to b, * for each pairs of 1-cells f, g in the same hom-set, a set \operatorname(f, g) called the set of 2-''cells'' from f to g, * ''ordinary composit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Core Of A Category
In mathematics, especially category theory, the core of a category ''C'' is the category whose objects are the objects of ''C'' and whose morphisms are the invertible morphisms in ''C''.Pierre Gabriel, Michel Zisman, § 1.5.4., Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer (1967/ref> In other words, it is the largest groupoid subcategory. As a functor C \mapsto \operatorname(C), the core is a right adjoint to the inclusion of the category of (small) groupoids into the category of (small) categories. On the other hand, the left adjoint to the above inclusion is the fundamental groupoid functor. For ∞-categories, \operatorname is defined as a right adjoint to the inclusion ∞-Grpd \hookrightarrow ∞-Cat. The core of an ∞-category C is then the largest ∞-groupoid contained in C. The core of ''C'' is also often written as C^. The left adjoint to the above inclusion is given by a localization of an ∞-category. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]