HOME





Capacity Of A Set
In mathematics, the capacity of a set in Euclidean space is a measure of the "size" of that set. Unlike, say, Lebesgue measure, which measures a set's volume or physical extent, capacity is a mathematical analogue of a set's ability to hold electrical charge. More precisely, it is the capacitance of the set: the total charge a set can hold while maintaining a given potential energy. The potential energy is computed with respect to an idealized ground at infinity for the harmonic or Newtonian capacity, and with respect to a surface for the condenser capacity. Historical note The notion of capacity of a set and of "capacitable" set was introduced by Gustave Choquet in 1950: for a detailed account, see reference . Definitions Condenser capacity Let Σ be a closed, smooth, (''n'' − 1)-dimensional hypersurface in ''n''-dimensional Euclidean space \mathbb^n, will denote the ''n''-dimensional compact (i.e., closed and bounded) set of which Σ is the boundary. L ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Harmonic Function
In mathematics, mathematical physics and the theory of stochastic processes, a harmonic function is a twice continuously differentiable function f\colon U \to \mathbb R, where is an open subset of that satisfies Laplace's equation, that is, \frac + \frac + \cdots + \frac = 0 everywhere on . This is usually written as \nabla^2 f = 0 or \Delta f = 0 Etymology of the term "harmonic" The descriptor "harmonic" in the name "harmonic function" originates from a point on a taut string which is undergoing harmonic motion. The solution to the differential equation for this type of motion can be written in terms of sines and cosines, functions which are thus referred to as "harmonics." Fourier analysis involves expanding functions on the unit circle in terms of a series of these harmonics. Considering higher dimensional analogues of the harmonics on the unit ''n''-sphere, one arrives at the spherical harmonics. These functions satisfy Laplace's equation and, over time, "harmon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rectifiable Set
In mathematics, a rectifiable set is a set that is smooth in a certain measure-theoretic sense. It is an extension of the idea of a rectifiable curve to higher dimensions; loosely speaking, a rectifiable set is a rigorous formulation of a piece-wise smooth set. As such, it has many of the desirable properties of smooth manifolds, including tangent spaces that are defined almost everywhere. Rectifiable sets are the underlying object of study in geometric measure theory. Definition A Borel subset E of Euclidean space \mathbb^n is said to be m-rectifiable set if E is of Hausdorff dimension m, and there exist a countable collection \ of continuously differentiable maps :f_i:\mathbb^m \to \mathbb^n such that the m-Hausdorff measure \mathcal^m of :E\setminus \bigcup_^\infty f_i\left(\mathbb^m\right) is zero. The backslash here denotes the set difference. Equivalently, the f_i may be taken to be Lipschitz continuous without altering the definition. Other authors have different defin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Newtonian Potential
In mathematics, the Newtonian potential, or Newton potential, is an operator in vector calculus that acts as the inverse to the negative Laplacian on functions that are smooth and decay rapidly enough at infinity. As such, it is a fundamental object of study in potential theory. In its general nature, it is a singular integral operator, defined by convolution with a function having a mathematical singularity at the origin, the Newtonian kernel \Gamma which is the fundamental solution of the Laplace equation. It is named for Isaac Newton, who first discovered it and proved that it was a harmonic function in the special case of three variables, where it served as the fundamental gravitational potential in Newton's law of universal gravitation. In modern potential theory, the Newtonian potential is instead thought of as an electrostatic potential. The Newtonian potential of a compactly supported integrable function f is defined as the convolution u(x) = \Gamma * f(x) = \int_ \Gamm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Heuristic
A heuristic or heuristic technique (''problem solving'', '' mental shortcut'', ''rule of thumb'') is any approach to problem solving that employs a pragmatic method that is not fully optimized, perfected, or rationalized, but is nevertheless "good enough" as an approximation or attribute substitution. Where finding an optimal solution is impossible or impractical, heuristic methods can be used to speed up the process of finding a satisfactory solution. Heuristics can be mental shortcuts that ease the cognitive load of making a decision. Context Gigerenzer & Gaissmaier (2011) state that sub-sets of ''strategy'' include heuristics, regression analysis, and Bayesian inference. Heuristics are strategies based on rules to generate optimal decisions, like the anchoring effect and utility maximization problem. These strategies depend on using readily accessible, though loosely applicable, information to control problem solving in human beings, machines and abstract i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Smooth Function
In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives (''differentiability class)'' it has over its domain. A function of class C^k is a function of smoothness at least ; that is, a function of class C^k is a function that has a th derivative that is continuous in its domain. A function of class C^\infty or C^\infty-function (pronounced C-infinity function) is an infinitely differentiable function, that is, a function that has derivatives of all orders (this implies that all these derivatives are continuous). Generally, the term smooth function refers to a C^-function. However, it may also mean "sufficiently differentiable" for the problem under consideration. Differentiability classes Differentiability class is a classification of functions according to the properties of their derivatives. It is a measure of the highest order of derivative that exists and is continuous for a function. Consider an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Functional (mathematics)
In mathematics, a functional is a certain type of function. The exact definition of the term varies depending on the subfield (and sometimes even the author). * In linear algebra, it is synonymous with a linear form, which is a linear mapping from a vector space V into its field of scalars (that is, it is an element of the dual space V^*) "Let ''E'' be a free module over a commutative ring ''A''. We view ''A'' as a free module of rank 1 over itself. By the dual module ''E''∨ of ''E'' we shall mean the module Hom(''E'', ''A''). Its elements will be called functionals. Thus a functional on ''E'' is an ''A''-linear map ''f'' : ''E'' → ''A''." * In functional analysis and related fields, it refers to a mapping from a space X into the field of real or complex numbers. "A numerical function ''f''(''x'') defined on a normed linear space ''R'' will be called a ''functional''. A functional ''f''(''x'') is said to be ''linear'' if ''f''(α''x'' + β''y'') = α''f''(''x'') + β ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirichlet's Energy
In mathematics, the Dirichlet energy is a measure of how ''variable'' a function is. More abstractly, it is a quadratic functional on the Sobolev space . The Dirichlet energy is intimately connected to Laplace's equation and is named after the German mathematician Peter Gustav Lejeune Dirichlet. Definition Given an open set and a differentiable function , the Dirichlet energy of the function  is the real number :E = \frac 1 2 \int_\Omega \, \nabla u(x) \, ^2 \, dx, where denotes the gradient vector field of the function . Properties and applications Since it is the integral of a non-negative quantity, the Dirichlet energy is itself non-negative, i.e. for every function . Solving Laplace's equation -\Delta u(x) = 0 for all x \in \Omega, subject to appropriate boundary conditions, is equivalent to solving the variational problem of finding a function  that satisfies the boundary conditions and has minimal Dirichlet energy. Such a solution is called ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infimum
In mathematics, the infimum (abbreviated inf; : infima) of a subset S of a partially ordered set P is the greatest element in P that is less than or equal to each element of S, if such an element exists. If the infimum of S exists, it is unique, and if ''b'' is a lower bound of S, then ''b'' is less than or equal to the infimum of S. Consequently, the term ''greatest lower bound'' (abbreviated as ) is also commonly used. The supremum (abbreviated sup; : suprema) of a subset S of a partially ordered set P is the least element in P that is greater than or equal to each element of S, if such an element exists. If the supremum of S exists, it is unique, and if ''b'' is an upper bound of S, then the supremum of S is less than or equal to ''b''. Consequently, the supremum is also referred to as the ''least upper bound'' (or ). The infimum is, in a precise sense, dual to the concept of a supremum. Infima and suprema of real numbers are common special cases that are important in anal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Calculus Of Variations
The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in Function (mathematics), functions and functional (mathematics), functionals, to find maxima and minima of functionals: Map (mathematics), mappings from a set of Function (mathematics), functions to the real numbers. Functionals are often expressed as definite integrals involving functions and their derivatives. Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations. A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to lie on a surface in space, then the solution is less obvious, and possibly many solutions may exist. Such solutions are known as ''geodesics''. A related problem is posed by Fermat's principle: li ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Unit Sphere
In mathematics, a unit sphere is a sphere of unit radius: the locus (mathematics), set of points at Euclidean distance 1 from some center (geometry), center point in three-dimensional space. More generally, the ''unit -sphere'' is an n-sphere, -sphere of unit radius in -dimensional Euclidean space; the unit circle is a special case, the unit -sphere in the Euclidean plane, plane. An (Open set, open) unit ball is the region inside of a unit sphere, the set of points of distance less than 1 from the center. A sphere or ball with unit radius and center at the origin (mathematics), origin of the space is called ''the'' unit sphere or ''the'' unit ball. Any arbitrary sphere can be transformed to the unit sphere by a combination of translation (geometry), translation and scaling (geometry), scaling, so the study of spheres in general can often be reduced to the study of the unit sphere. The unit sphere is often used as a model for spherical geometry because it has constant sectional cu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Normal Derivative
In multivariable calculus, the directional derivative measures the rate at which a function changes in a particular direction at a given point. The directional derivative of a multivariable differentiable (scalar) function along a given vector v at a given point x intuitively represents the instantaneous rate of change of the function, moving through x with a direction specified by v. The directional derivative of a scalar function ''f'' with respect to a vector v at a point (e.g., position) x may be denoted by any of the following: \begin \nabla_(\mathbf) &=f'_\mathbf(\mathbf)\\ &=D_\mathbff(\mathbf)\\ &=Df(\mathbf)(\mathbf)\\ &=\partial_\mathbff(\mathbf)\\ &=\mathbf\cdot\\ &=\mathbf\cdot \frac.\\ \end It therefore generalizes the notion of a partial derivative, in which the rate of change is taken along one of the curvilinear coordinate curves, all other coordinates being constant. The directional derivative is a special case of the Gateaux derivative. Definition ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]