Cantellated 7-orthoplex
In seven-dimensional geometry, a cantellated 7-orthoplex is a convex uniform 7-polytope, being a cantellation of the regular 7-orthoplex. There are ten degrees of cantellation for the 7-orthoplex, including truncation (geometry), truncations. Six are most simply constructible from the dual 7-cube. Cantellated 7-orthoplex Alternate names * Small rhombated hecatonicosoctaexon (acronym: sarz) (Jonathan Bowers) Images Bicantellated 7-orthoplex Alternate names * Small birhombated hecatonicosoctaexon (acronym: sebraz) (Jonathan Bowers) Images Cantitruncated 7-orthoplex Alternate names * Great rhombated hecatonicosoctaexon (acronym: garz) (Jonathan Bowers) Images Bicantitruncated 7-orthoplex Alternate names * Great birhombated hecatonicosoctaexon (acronym: gebraz) (Jonathan Bowers)Klitizing, (o3o3o3x3x3x4o - gebraz) Images Related polytopes These polytopes are from a family of 127 uniform 7-polytopes with B7 symmetry. See also * List of B7 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
7-cube T6 B6
In geometry, a 7-cube is a seven-dimensional space, seven-dimensional hypercube with 128 Vertex (geometry), vertices, 448 Edge (geometry), edges, 672 square Face (geometry), faces, 560 cubic Cell (mathematics), cells, 280 tesseract 4-faces, 84 penteract 5-faces, and 14 hexeract 6-faces. It can be named by its Schläfli symbol , being composed of 3 6-cubes around each 5-face. It can be called a hepteract, a portmanteau of tesseract (the ''4-cube'') and ''hepta'' for seven (dimensions) in Greek language, Greek. It can also be called a regular tetradeca-7-tope or tetradecaexon, being a 7-polytope, 7 dimensional polytope constructed from 14 regular Facet (geometry), facets. Related polytopes The ''7-cube'' is 7th in a series of hypercube: The Dual polytope, dual of a 7-cube is called a 7-orthoplex, and is a part of the infinite family of cross-polytopes. Applying an ''Alternation (geometry), alternation'' operation, deleting alternating vertices of the hepteract, creates anoth ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bicantitruncated 7-cube
In seven-dimensional geometry, a cantellated 7-cube is a convex uniform 7-polytope, being a cantellation of the regular 7-cube. There are 10 degrees of cantellation for the 7-cube, including truncations. 4 are most simply constructible from the dual 7-orthoplex. Cantellated 7-cube Alternate names * Small rhombated hepteract (acronym: sersa) (Jonathan Bowers) Images Bicantellated 7-cube Alternate names * Small birhombated hepteract (acronym: sibrosa) (Jonathan Bowers) Images Tricantellated 7-cube Alternate names * Small trirhombihepteractihecatonicosoctaexon (acronym: strasaz) (Jonathan Bowers) Images Cantitruncated 7-cube Alternate names * Great rhombated hepteract (acronym: gersa) (Jonathan Bowers) Images It is fifth in a series of cantitruncated hypercubes: Bicantitruncated 7-cube Alternate names * Great birhombated hepteract (acronym: gibrosa) (Jonathan Bowers) Images Tricantitruncated 7-cube Alternate names * Grea ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Coxeter Group
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; for example, the symmetry group of each regular polyhedron is a finite Coxeter group. However, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced in 1934 as abstractions of reflection groups, and finite Coxeter groups were classified in 1935. Coxeter groups find applications in many areas of mathematics. Examples of finite Coxeter groups include the symmetry groups of regular polytopes, and the Weyl groups of simple Lie algebras. Examples of infinite Coxeter groups include the triangle groups corresponding to regular tessellations of the Euclidean plane and the hyperbolic plane, and the Weyl groups of infinite-dimensional ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vertex Figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a general -polytope is sliced off. Definitions Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw lines across the connected faces, joining adjacent points around the face. When done, these lines form a complete circuit, i.e. a polygon, around the vertex. This polygon is the vertex figure. More precise formal definitions can vary quite widely, according to circumstance. For example Coxeter (e.g. 1948, 1954) varies his definition as convenient for the current area of discussion. Most of the following definitions of a vertex figure apply equally well to infinite tessellation, tilings or, by extension, to Honeycomb (geometry), space-filling tessellation with polytope Cell (geometry), cells and other higher-dimensional polytopes. As a flat slice Make a slice through the corner of the polyhedron, cutting through all the edges conn ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Schläfli Symbol
In geometry, the Schläfli symbol is a notation of the form \ that defines List of regular polytopes and compounds, regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean space, Euclidean geometry to more than three dimensions and discovered all their convex regular polytopes, including the six that occur in four dimensions. Definition The Schläfli symbol is a Recursive definition, recursive description, starting with \ for a p-sided regular polygon that is Convex set, convex. For example, is an equilateral triangle, is a Square (geometry), square, a convex regular pentagon, etc. Regular star polygons are not convex, and their Schläfli symbols \ contain irreducible fractions p/q, where p is the number of vertices, and q is their turning number. Equivalently, \ is created from the vertices of \, connected every q. For example, \ is a pentagram; \ is a pentagon. A regular pol ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
7-cube
In geometry, a 7-cube is a seven-dimensional hypercube with 128 vertices, 448 edges, 672 square faces, 560 cubic cells, 280 tesseract 4-faces, 84 penteract 5-faces, and 14 hexeract 6-faces. It can be named by its Schläfli symbol , being composed of 3 6-cubes around each 5-face. It can be called a hepteract, a portmanteau of tesseract (the ''4-cube'') and ''hepta'' for seven (dimensions) in Greek. It can also be called a regular tetradeca-7-tope or tetradecaexon, being a 7 dimensional polytope constructed from 14 regular facets. Related polytopes The ''7-cube'' is 7th in a series of hypercube: The dual of a 7-cube is called a 7-orthoplex, and is a part of the infinite family of cross-polytopes. Applying an '' alternation'' operation, deleting alternating vertices of the hepteract, creates another uniform polytope, called a demihepteract, (part of an infinite family called demihypercubes), which has 14 demihexeractic and 64 6-simplex 6-faces. As a configuration This ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Truncation (geometry)
In geometry, a truncation is an operation in any dimension that cuts polytope vertices, creating a new Facet (geometry), facet in place of each vertex. The term originates from Kepler's names for the Archimedean solids. Uniform truncation In general any polyhedron (or polytope) can also be truncated with a degree of freedom as to how deep the cut is, as shown in Conway polyhedron notation truncation operation. A special kind of truncation, usually implied, is a uniform truncation, a truncation operator applied to a regular polyhedron (or regular polytope) which creates a resulting uniform polyhedron (uniform polytope) with equal edge lengths. There are no degrees of freedom, and it represents a fixed geometric, just like the regular polyhedra. In general all single ringed uniform polytopes have a uniform truncation. For example, the icosidodecahedron, represented as Schläfli symbols r or \begin 5 \\ 3 \end, and Coxeter-Dynkin diagram or has a uniform truncation, the truncate ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cantellation
In geometry, a cantellation is a 2nd-order truncation in any dimension that bevels a regular polytope at its edges and at its vertices, creating a new facet in place of each edge and of each vertex. Cantellation also applies to regular tilings and honeycombs. Cantellating a polyhedron is also rectifying its rectification. Cantellation (for polyhedra and tilings) is also called '' expansion'' by Alicia Boole Stott: it corresponds to moving the faces of the regular form away from the center, and filling in a new face in the gap for each opened edge and for each opened vertex. Notation A cantellated polytope is represented by an extended Schläfli symbol ''t''0,2 or ''r''\beginp\\q\\...\end or ''rr''. For polyhedra, a cantellation offers a direct sequence from a regular polyhedron to its dual. Example: cantellation sequence between cube and octahedron: Example: a cuboctahedron is a cantellated tetrahedron. For higher-dimensional polytopes, a cantellation offers a direct ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Uniform 7-polytope
In seven-dimensional space, seven-dimensional geometry, a 7-polytope is a polytope contained by 6-polytope facets. Each 5-polytope Ridge (geometry), ridge being shared by exactly two 6-polytope Facet (mathematics), facets. A uniform 7-polytope is one whose symmetry group is vertex-transitive, transitive on vertices and whose facets are uniform 6-polytopes. Regular 7-polytopes Regular 7-polytopes are represented by the Schläfli symbol with u 6-polytopes Facet (mathematics), facets around each 4-face. There are exactly three such List of regular polytopes#Convex 4, convex regular 7-polytopes: # - 7-simplex # - 7-cube # - 7-orthoplex There are no nonconvex regular 7-polytopes. Characteristics The topology of any given 7-polytope is defined by its Betti numbers and torsion coefficient (topology), torsion coefficients.Richeson, D.; ''Euler's Gem: The Polyhedron Formula and the Birth of Topoplogy'', Princeton, 2008. The value of the Euler characteristic used to character ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a ''List of geometers, geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point (geometry), point, line (geometry), line, plane (geometry), plane, distance, angle, surface (mathematics), surface, and curve, as fundamental concepts. Originally developed to model the physical world, geometry has applications in almost all sciences, and also in art, architecture, and other activities that are related to graphics. Geometry also has applications in areas of mathematics that are apparently unrelated. For example, methods of algebraic geometry are fundamental in Wiles's proof of Fermat's Last Theorem, Wiles's proof of Fermat's ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Coxeter Plane
In mathematics, a Coxeter element is an element of an irreducible Coxeter group which is a product of all simple reflections. The product depends on the order in which they are taken, but different orderings produce conjugate elements, which have the same order. This order is known as the Coxeter number. They are named after British-Canadian geometer H.S.M. Coxeter, who introduced the groups in 1934 as abstractions of reflection groups. Definitions Note that this article assumes a finite Coxeter group. For infinite Coxeter groups, there are multiple conjugacy classes of Coxeter elements, and they have infinite order. There are many different ways to define the Coxeter number of an irreducible root system. *The Coxeter number is the order of any Coxeter element;. *The Coxeter number is where is the rank, and is the number of reflections. In the crystallographic case, is half the number of roots; and is the dimension of the corresponding semisimple Lie algebra. *If the h ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |