Calabi–Yau Theorem
   HOME





Calabi–Yau Theorem
In the mathematical field of differential geometry, the Calabi conjecture was a conjecture about the existence of certain kinds of Riemannian metrics on certain complex manifolds, made by . It was proved by , who received the Fields Medal and Oswald Veblen Prize in Geometry, Oswald Veblen Prize in part for his proof. His work, principally an analysis of an elliptic partial differential equation known as the Monge–Ampère equation, complex Monge–Ampère equation, was an influential early result in the field of geometric analysis. More precisely, Calabi's conjecture asserts the resolution of the prescribed Ricci curvature problem within the setting of Kähler metrics on closed manifold, closed complex manifolds. According to Chern–Weil theory, the Ricci curvature#Kähler manifolds, Ricci form of any such metric is a differential form, closed differential 2-form which represents the first Chern class. Calabi conjectured that for any such differential form , there is exactly one K ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as classical antiquity, antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Nikolai Lobachevsky, Lobachevsky. The simplest examples of smooth spaces are the Differential geometry of curves, plane and space curves and Differential geometry of surfaces, surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE