CDF-based Nonparametric Confidence Interval
In statistics, cumulative distribution function (CDF)-based nonparametric confidence intervals are a general class of confidence intervals around statistical functionals of a distribution. To calculate these confidence intervals, all that is required is an independently and identically distributed (iid) sample from the distribution and known bounds on the support of the distribution. The latter requirement simply means that all the nonzero probability mass of the distribution must be contained in some known interval ,b/math>. Intuition The intuition behind the CDF-based approach is that bounds on the CDF of a distribution can be translated into bounds on statistical functionals of that distribution. Given an upper and lower bound on the CDF, the approach involves finding the CDFs within the bounds that maximize and minimize the statistical functional of interest. Properties of the bounds Unlike approaches that make asymptotic assumptions, including bootstrap approaches an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Binomial Proportion Confidence Interval
In statistics, a binomial proportion confidence interval is a confidence interval for the probability of success calculated from the outcome of a series of success–failure experiments (Bernoulli trials). In other words, a binomial proportion confidence interval is an interval estimate of a success probability \ p\ when only the number of experiments \ n\ and the number of successes \ n_\mathsf\ are known. There are several formulas for a binomial confidence interval, but all of them rely on the assumption of a binomial distribution. In general, a binomial distribution applies when an experiment is repeated a fixed number of times, each trial of the experiment has two possible outcomes (success and failure), the probability of success is the same for each trial, and the trials are statistically independent. Because the binomial distribution is a discrete probability distribution (i.e., not continuous) and difficult to calculate for large numbers of trials, a variety of approxima ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Empirical Distribution Function
In statistics, an empirical distribution function ( an empirical cumulative distribution function, eCDF) is the Cumulative distribution function, distribution function associated with the empirical measure of a Sampling (statistics), sample. This cumulative distribution function is a step function that jumps up by at each of the data points. Its value at any specified value of the measured variable is the fraction of observations of the measured variable that are less than or equal to the specified value. The empirical distribution function is an Estimator, estimate of the cumulative distribution function that generated the points in the sample. It converges with probability 1 to that underlying distribution, according to the Glivenko–Cantelli theorem. A number of results exist to quantify the rate of Convergence of random variables#Convergence in distribution, convergence of the empirical distribution function to the underlying cumulative distribution function. Definition ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Estimation Theory
Estimation theory is a branch of statistics that deals with estimating the values of Statistical parameter, parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their value affects the distribution of the measured data. An ''estimator'' attempts to approximate the unknown parameters using the measurements. In estimation theory, two approaches are generally considered: * The probabilistic approach (described in this article) assumes that the measured data is random with probability distribution dependent on the parameters of interest * The set estimation, set-membership approach assumes that the measured data vector belongs to a set which depends on the parameter vector. Examples For example, it is desired to estimate the proportion of a population of voters who will vote for a particular candidate. That proportion is the parameter sought; the estimate is based on a small random sa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nonparametric Statistics
Nonparametric statistics is a type of statistical analysis that makes minimal assumptions about the underlying distribution of the data being studied. Often these models are infinite-dimensional, rather than finite dimensional, as in parametric statistics. Nonparametric statistics can be used for descriptive statistics or statistical inference. Nonparametric tests are often used when the assumptions of parametric tests are evidently violated. Definitions The term "nonparametric statistics" has been defined imprecisely in the following two ways, among others: The first meaning of ''nonparametric'' involves techniques that do not rely on data belonging to any particular parametric family of probability distributions. These include, among others: * Methods which are ''distribution-free'', which do not rely on assumptions that the data are drawn from a given parametric family of probability distributions. * Statistics defined to be a function on a sample, without dependency on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Non-parametric Statistics
Nonparametric statistics is a type of statistical analysis that makes minimal assumptions about the underlying distribution of the data being studied. Often these models are infinite-dimensional, rather than finite dimensional, as in parametric statistics. Nonparametric statistics can be used for descriptive statistics or statistical inference. Nonparametric tests are often used when the assumptions of parametric tests are evidently violated. Definitions The term "nonparametric statistics" has been defined imprecisely in the following two ways, among others: The first meaning of ''nonparametric'' involves techniques that do not rely on data belonging to any particular parametric family of probability distributions. These include, among others: * Methods which are ''distribution-free'', which do not rely on assumptions that the data are drawn from a given parametric family of probability distributions. * Statistics defined to be a function on a sample, without dependency on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mutual Information
In probability theory and information theory, the mutual information (MI) of two random variables is a measure of the mutual Statistical dependence, dependence between the two variables. More specifically, it quantifies the "Information content, amount of information" (in Units of information, units such as shannon (unit), shannons (bits), Nat (unit), nats or Hartley (unit), hartleys) obtained about one random variable by observing the other random variable. The concept of mutual information is intimately linked to that of Entropy (information theory), entropy of a random variable, a fundamental notion in information theory that quantifies the expected "amount of information" held in a random variable. Not limited to real-valued random variables and linear dependence like the Pearson correlation coefficient, correlation coefficient, MI is more general and determines how different the joint distribution of the pair (X,Y) is from the product of the marginal distributions of X and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Entropy (information Theory)
In information theory, the entropy of a random variable quantifies the average level of uncertainty or information associated with the variable's potential states or possible outcomes. This measures the expected amount of information needed to describe the state of the variable, considering the distribution of probabilities across all potential states. Given a discrete random variable X, which may be any member x within the set \mathcal and is distributed according to p\colon \mathcal\to[0, 1], the entropy is \Eta(X) := -\sum_ p(x) \log p(x), where \Sigma denotes the sum over the variable's possible values. The choice of base for \log, the logarithm, varies for different applications. Base 2 gives the unit of bits (or "shannon (unit), shannons"), while base Euler's number, ''e'' gives "natural units" nat (unit), nat, and base 10 gives units of "dits", "bans", or "Hartley (unit), hartleys". An equivalent definition of entropy is the expected value of the self-information of a v ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kolmogorov–Smirnov Test
In statistics, the Kolmogorov–Smirnov test (also K–S test or KS test) is a nonparametric statistics, nonparametric test of the equality of continuous (or discontinuous, see #Discrete and mixed null distribution, Section 2.2), one-dimensional probability distributions. It can be used to test whether a random sample, sample came from a given reference probability distribution (one-sample K–S test), or to test whether two samples came from the same distribution (two-sample K–S test). Intuitively, it provides a method to qualitatively answer the question "How likely is it that we would see a collection of samples like this if they were drawn from that probability distribution?" or, in the second case, "How likely is it that we would see two sets of samples like this if they were drawn from the same (but unknown) probability distribution?". It is named after Andrey Kolmogorov and Nikolai Smirnov (mathematician), Nikolai Smirnov. The Kolmogorov–Smirnov statistic quantifies ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dvoretzky–Kiefer–Wolfowitz Inequality
In the theory of probability and statistics, the Dvoretzky–Kiefer–Wolfowitz–Massart inequality (DKW inequality) provides a bound on the worst case distance of an empirical distribution function, empirically determined distribution function from its associated population cumulative distribution function, distribution function. It is named after Aryeh Dvoretzky, Jack Kiefer (mathematician), Jack Kiefer, and Jacob Wolfowitz, who in 1956 proved the inequality : \Pr\Bigl(\sup_ , F_n(x) - F(x), > \varepsilon \Bigr) \le Ce^\qquad \text\varepsilon>0. with an unspecified multiplicative constant ''C'' in front of the exponent on the right-hand side. In 1990, Pascal Massart proved the inequality with the sharp constant ''C'' = 2, confirming a conjecture due to Allan Birnbaum, Birnbaum and McCarty. The DKW inequality Given a natural number ''n'', let ''X''1, ''X''2, …, ''Xn'' be real-valued independent and identically distributed random variables with cumula ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Statistics
Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of statistical survey, surveys and experimental design, experiments. When census data (comprising every member of the target population) cannot be collected, statisticians collect data by developing specific experiment designs and survey sample (statistics), samples. Representative sampling assures that inferences and conclusions can reasonably extend from the sample ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |