Bruno Zumino
Bruno Zumino (28 April 1923 − 21 June 2014) was an Italian theoretical physicist and faculty member at the University of California, Berkeley. He obtained his DSc degree from the University of Rome in 1945. He was renowned for his rigorous proof of the CPT theorem with Gerhart Lüders; his pioneering systematization of effective chiral Lagrangians; the discoveries, with Julius Wess, of the Wess–Zumino model, the first four-dimensional supersymmetric quantum field theory with Bose-Fermi degeneracy, and initiator of the field of supersymmetric radiative restrictions; a concise formulation of supergravity; and for his deciphering of structured flavor-chiral anomalies, codified in the Wess–Zumino–Witten model of conformal field theory. Awards * 1985 Membership in the National Academy of Sciences * 1987 Dirac Medal of the ICTP * 1988 Dannie Heineman Prize for Mathematical Physics * 1989 Max Planck Medal * 1992 Wigner Medal * 1992 Humboldt Research Award * 1999 Gi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rome
, established_title = Founded , established_date = 753 BC , founder = King Romulus ( legendary) , image_map = Map of comune of Rome (metropolitan city of Capital Rome, region Lazio, Italy).svg , map_caption = The territory of the ''comune'' (''Roma Capitale'', in red) inside the Metropolitan City of Rome (''Città Metropolitana di Roma'', in yellow). The white spot in the centre is Vatican City. , pushpin_map = Italy#Europe , pushpin_map_caption = Location within Italy##Location within Europe , pushpin_relief = yes , coordinates = , coor_pinpoint = , subdivision_type = Country , subdivision_name = Italy , subdivision_type2 = Regions of Italy, Region , subdivision_name2 = Lazio , subdivision_type3 = Metropolitan cities of Italy, Metropolitan city , subdivision_name3 = Metropolitan City of Rome Capital, Rome Capital , government_footnotes= , government_type = Mayor–council gover ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Humboldt Prize
The Humboldt Prize, the Humboldt-Forschungspreis in German, also known as the Humboldt Research Award, is an award given by the Alexander von Humboldt Foundation of Germany to internationally renowned scientists and scholars who work outside of Germany in recognition of their lifetime's research achievements. Recipients are "academics whose fundamental discoveries, new theories or insights have had a significant impact on their own discipline and who are expected to continue producing cutting-edge academic achievements in the future". The prize is currently valued at €60,000 with the possibility of further support during the prize winner's life. Up to one hundred such awards are granted each year. Nominations must be submitted by established academics in Germany. The award is named after the Prussian naturalist and explorer Alexander von Humboldt. Past winners Biology Günter Blobel, Serge Daan, Aaron M. Ellison, Eberhard Fetz, Daniel Gianola, Hendrikus Granzier, Dan Gr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
National Academy Of Sciences
The National Academy of Sciences (NAS) is a United States nonprofit, non-governmental organization. NAS is part of the National Academies of Sciences, Engineering, and Medicine, along with the National Academy of Engineering (NAE) and the National Academy of Medicine (NAM). As a national academy, new members of the organization are elected annually by current members, based on their distinguished and continuing achievements in original research. Election to the National Academy is one of the highest honors in the scientific field. Members of the National Academy of Sciences serve '' pro bono'' as "advisers to the nation" on science, engineering, and medicine. The group holds a congressional charter under Title 36 of the United States Code. Founded in 1863 as a result of an Act of Congress that was approved by Abraham Lincoln, the NAS is charged with "providing independent, objective advice to the nation on matters related to science and technology. ... to provide sci ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conformal Field Theory
A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometimes be exactly solved or classified. Conformal field theory has important applications to condensed matter physics, statistical mechanics, quantum statistical mechanics, and string theory. Statistical and condensed matter systems are indeed often conformally invariant at their thermodynamic or quantum critical points. Scale invariance vs conformal invariance In quantum field theory, scale invariance is a common and natural symmetry, because any fixed point of the renormalization group is by definition scale invariant. Conformal symmetry is stronger than scale invariance, and one needs additional assumptions to argue that it should appear in nature. The basic idea behind its plausibility is that ''local'' scale invariant theories have t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Supergravity
In theoretical physics, supergravity (supergravity theory; SUGRA for short) is a modern field theory that combines the principles of supersymmetry and general relativity; this is in contrast to non-gravitational supersymmetric theories such as the Minimal Supersymmetric Standard Model. Supergravity is the gauge theory of local supersymmetry. Since the supersymmetry (SUSY) generators form together with the Poincaré algebra a superalgebra, called the super-Poincaré algebra, supersymmetry as a gauge theory makes gravity arise in a natural way. Gravitons Like any field theory of gravity, a supergravity theory contains a spin-2 field whose quantum is the graviton. Supersymmetry requires the graviton field to have a superpartner. This field has spin 3/2 and its quantum is the gravitino. The number of gravitino fields is equal to the number of supersymmetries. History Gauge supersymmetry The first theory of local supersymmetry was proposed by Dick Arnowitt and Pran Nath ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. QFT treats particles as excited states (also called quanta) of their underlying quantum fields, which are more fundamental than the particles. The equation of motion of the particle is determined by minimization of the Lagrangian, a functional of fields associated with the particle. Interactions between particles are described by interaction terms in the Lagrangian involving their corresponding quantum fields. Each interaction can be visually represented by Feynman diagrams according to perturbation theory in quantum mechanics. History Quantum field theory emerged from the work of generations of theoretical physicists spanning much of the 20th century. Its devel ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Supersymmetric
In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories exist. Supersymmetry is a spacetime symmetry between two basic classes of particles: bosons, which have an integer-valued spin and follow Bose–Einstein statistics, and fermions, which have a half-integer-valued spin and follow Fermi–Dirac statistics. In supersymmetry, each particle from one class would have an associated particle in the other, known as its superpartner, the spin of which differs by a half-integer. For example, if the electron exists in a supersymmetric theory, then there would be a particle called a ''"selectron"'' (superpartner electron), a bosonic partner of the electron. In the simplest supersymmetry theories, with perfectly " unbroken" supersymmetry, each pair of superpartners would share the same mass and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Wess–Zumino Model
In theoretical physics, the Wess–Zumino model has become the first known example of an interacting four-dimensional quantum field theory with linearly realised supersymmetry. In 1974, Julius Wess and Bruno Zumino studied, using modern terminology, dynamics of a single chiral superfield (composed of a complex scalar and a spinor fermion) whose cubic superpotential leads to a renormalizable theory. The treatment in this article largely follows that of Figueroa-O'Farrill's lectures on supersymmetry, and to some extent of Tong. The model is an important model in supersymmetric quantum field theory. It is arguably the simplest supersymmetric field theory in four dimensions, and is ungauged. The Wess–Zumino action Preliminary treatment Spacetime and matter content In a preliminary treatment, the theory is defined on flat spacetime (Minkowski space). For this article, the metric has ''mostly plus'' signature. The matter content is a real scalar field S, a real pseudoscala ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Julius Wess
Julius Erich Wess (5 December 19348 August 2007) was an Austrian theoretical physicist noted as the co-inventor of the Wess–Zumino model and Wess–Zumino–Witten model in the field of supersymmetry and conformal field theory. He was also a recipient of the Max Planck medal, the Wigner medal, the Gottfried Wilhelm Leibniz Prize, the Heineman Prize, and of several honorary doctorates. Life and work Wess was born in Oberwölz Stadt, a small town in the Austrian state of Styria. He received his Ph.D. in Vienna, where he was a student of Hans Thirring. His Ph.D. examiner was acclaimed quantum mechanics physicist Erwin Schrödinger. After working at CERN in Switzerland and at the Courant Institute of New York University, United States, he became a professor at the University of Karlsruhe. In later life, Wess was professor at the Ludwig Maximilian University of Munich. After his retirement he worked at DESY in Hamburg. His doctoral students include Hermann Nicolai. Julius We ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gerhart Lüders
Gerhart Lüders (25 February 1920 – 31 January 1995) was a German theoretical physicist who worked mainly in quantum field theory and was well known for the discovery and a general proof of the CPT theorem. This theorem is also called the ''Pauli-Lüders theorem'' and is one of the most fundamental rules of particle physics. Life and works Lüders was born in Hamburg. He received his physics doctorate in 1950 at the University of Hamburg and his habilitation degree in 1954 at the University of Göttingen. In the same year, he proved the CPT theorem in the particular form that for a relativistic quantum field theory the validity of parity invariance necessarily implies the validity of CT invariance. (Wolfgang Pauli, who like John Bell formulated this theorem independently of Lüders, gave a little later a more general proof.) With Bruno Zumino, Lüders in 1958 gave a rigorous proof of the so-called spin–statistics theorem and once again a proof of the CPT theorem, this time f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
CPT Theorem
Charge, parity, and time reversal symmetry is a fundamental symmetry of physical laws under the simultaneous transformations of charge conjugation (C), parity transformation (P), and time reversal (T). CPT is the only combination of C, P, and T that is observed to be an exact symmetry of nature at the fundamental level. The CPT theorem says that CPT symmetry holds for all physical phenomena, or more precisely, that any Lorentz invariant local quantum field theory with a Hermitian Hamiltonian must have CPT symmetry. History The CPT theorem appeared for the first time, implicitly, in the work of Julian Schwinger in 1951 to prove the connection between spin and statistics. In 1954, Gerhart Lüders and Wolfgang Pauli derived more explicit proofs, so this theorem is sometimes known as the Lüders–Pauli theorem. At about the same time, and independently, this theorem was also proved by John Stewart Bell. These proofs are based on the principle of Lorentz invariance and the pr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |