Bondi Accretion
In astrophysics, the Bondi accretion (also called Bondi–Hoyle–Lyttleton accretion), named after Hermann Bondi, is spherical accretion onto a compact object traveling through the interstellar medium. It is generally used in the context of neutron star and black hole accretion. To achieve an approximate form of the Bondi accretion rate, accretion is assumed to occur at a rate : \dot \simeq \pi R^2 \rho v . where: * \rho is the ambient density * v is the object's velocity v_o or the sound speed c_s in the surrounding medium if v_o < c_s * is the Bondi radius, defined as . The Bondi radius comes from setting escape velocity equal to the sound speed and solving for radius. It represents the boundary between subsonic and supersonic infall. Substituting the Bondi radius in the above equation yields: . These are only scaling relations rather than rigorous definitions. A more complete solut ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Astrophysics
Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline, James Keeler, said, astrophysics "seeks to ascertain the nature of the heavenly bodies, rather than their positions or motions in space—''what'' they are, rather than ''where'' they are", which is studied in celestial mechanics. Among the subjects studied are the Sun ( solar physics), other stars, galaxies, extrasolar planets, the interstellar medium, and the cosmic microwave background. Emissions from these objects are examined across all parts of the electromagnetic spectrum, and the properties examined include luminosity, density, temperature, and chemical composition. Because astrophysics is a very broad subject, ''astrophysicists'' apply concepts and methods from many disciplines of physics, including classical mechanics, electromagnetism, statistical mechanics, thermodynamics, quantum ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hermann Bondi
Sir Hermann Bondi (1 November 1919 – 10 September 2005) was an Austrian-British people, British mathematician and physical cosmology, cosmologist. He is best known for developing the steady state model of the universe with Fred Hoyle and Thomas Gold as an alternative to the Big Bang theory. He contributed to the theory of general relativity,Obituaries: Professor Sir Hermann Bondi(12 September 2005) in ''The Independent''. Professor Sir Hermann Bondi(2005-09-13) in ''The Daily Telegraph, The Telegraph''. Sir Hermann Bondi(2005-09-14) in ''The Guardian''. Sir Hermann Bondi: 1919–2005(2005-09-14) in ''Physics World'', Institute of Physics, IOP. Black hole scientist Bondi dies(2005-09-17), BBC News. and was the first to analyze the Mass#Inertial vs. gravitational mass, inertial and gravitational interaction of negative mass and the first to explicate correctly the nature of gravitational waves. In his 1990 autobiography, Bondi regarded the 1962 work on gravitational waves as h ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Accretion (astrophysics)
In astrophysics, accretion is the accumulation of particles into a massive object by gravity, gravitationally attracting more matter, typically gaseous matter, into an accretion disk. Most astronomical objects, such as galaxy, galaxies, stars, and planets, are formed by accretion processes. Overview The accretion model that Earth and the other terrestrial planets formed from meteoric material was proposed in 1944 by Otto Schmidt, followed by the ''protoplanet theory'' of William McCrea (astronomer), William McCrea (1960) and finally the ''capture theory'' of Michael Woolfson. For details of Kant's position, see In 1978, Andrew Prentice resurrected the initial Laplacian ideas about planet formation and developed the ''modern Laplacian theory''. None of these models proved completely successful, and many of the proposed theories were descriptive. The 1944 accretion model by Otto Schmidt was further developed in a quantitative way in 1969 by Viktor Safronov. He calculated, in deta ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Compact Object
In astronomy, the term compact object (or compact star) refers collectively to white dwarfs, neutron stars, and black holes. It could also include exotic stars if such hypothetical, dense bodies are confirmed to exist. All compact objects have a high mass relative to their radius, giving them a very high density, compared to ordinary atomic matter. Compact objects are often the endpoints of stellar evolution and, in this respect, are also called stellar remnants. They can also be called dead stars in public communications. The state and type of a stellar remnant depends primarily on the mass of the star that it formed from. The ambiguous term ''compact object'' is often used when the exact nature of the star is not known, but evidence suggests that it has a very small radius compared to ordinary stars. A compact object that is not a black hole may be called a degenerate star. In June 2020, astronomers reported narrowing down the source of Fast Radio Bursts (FRBs), which may now ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Interstellar Medium
The interstellar medium (ISM) is the matter and radiation that exists in the outer space, space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as cosmic dust, dust and cosmic rays. It fills interstellar space and blends smoothly into the surrounding intergalactic medium. The energy that occupies the same volume, in the form of electromagnetic radiation, is the interstellar radiation field. Although the density of atoms in the ISM is usually far below that in the best laboratory vacuums, the mean free path between collisions is short compared to typical interstellar lengths, so on these scales the ISM behaves as a gas (more precisely, as a Plasma (physics), plasma: it is everywhere at least slightly ionized), responding to pressure forces, and not as a collection of non-interacting particles. The interstellar medium is composed of multiple phases distinguished by whether matter is ionic, atomic, or molecular, and the temp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Neutron Star
A neutron star is the gravitationally collapsed Stellar core, core of a massive supergiant star. It results from the supernova explosion of a stellar evolution#Massive star, massive star—combined with gravitational collapse—that compresses the core past white dwarf star density to that of Atomic nucleus, atomic nuclei. Surpassed only by black holes, neutron stars are the second smallest and densest known class of stellar objects. Neutron stars have a radius on the order of and a mass of about . Stars that collapse into neutron stars have a total mass of between 10 and 25 solar masses (), or possibly more for those that are especially rich in Metallicity, elements heavier than hydrogen and helium. Once formed, neutron stars no longer actively generate heat and cool over time, but they may still evolve further through Stellar collision, collisions or Accretion (astrophysics), accretion. Most of the basic models for these objects imply that they are composed almost entirely o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Black Hole
A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. The boundary (topology), boundary of no escape is called the event horizon. A black hole has a great effect on the fate and circumstances of an object crossing it, but has no locally detectable features according to general relativity. In many ways, a black hole acts like an ideal black body, as it reflects no light. Quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with thermal radiation, the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is of the Orders of magnitude (temperature), order of billionths of a kelvin for stellar black holes, making it essentially impossible to observe directly. Objects whose gravitational fields are too strong for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sound Speed
The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At , the speed of sound in air is about , or in or one mile in . It depends strongly on temperature as well as the medium through which a sound wave is propagating. At , the speed of sound in dry air (sea level 14.7 psi) is about . The speed of sound in an ideal gas depends only on its temperature and composition. The speed has a weak dependence on frequency and pressure in dry air, deviating slightly from ideal behavior. In colloquial speech, ''speed of sound'' refers to the speed of sound waves in air. However, the speed of sound varies from substance to substance: typically, sound travels most slowly in gases, faster in liquids, and fastest in solids. For example, while sound travels at in air, it travels at in water (almost 4.3 times as fast) and at in iron (almost 15 times as fast). ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kelvin–Helmholtz Mechanism
The Kelvin–Helmholtz mechanism is an astronomical process that occurs when the surface of a star or a planet cools. The cooling causes the internal pressure to drop, and the star or planet shrinks as a result. This compression, in turn, heats the core of the star/planet. This mechanism is evident on Jupiter and Saturn and on brown dwarfs whose central temperatures are not high enough to undergo hydrogen fusion. It is estimated that Jupiter radiates more energy through this mechanism than it receives from the Sun, but Saturn might not. Jupiter has been estimated to shrink at a rate of approximately 1 mm/year by this process, corresponding to an internal flux of 7.485 W/m2. The mechanism was originally proposed by Kelvin and Helmholtz in the late nineteenth century to explain the source of energy of the Sun. By the mid-nineteenth century, conservation of energy had been accepted, and one consequence of this law of physics is that the Sun must have some energy source to c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monthly Notices Of The Royal Astronomical Society
''Monthly Notices of the Royal Astronomical Society'' (MNRAS) is a peer-reviewed scientific journal in astronomy, astrophysics and related fields. It publishes original research in two formats: papers (of any length) and letters (limited to five pages). MNRAS publishes more articles per year than any other astronomy journal. The learned society journal has been in continuous existence since 1827 and became online only in 2020. It operates as a partnership between the Royal Astronomical Society (RAS), who select and peer-review the contents, and Oxford University Press (OUP), who publish and market the journal. Despite its name, MNRAS is no longer monthly, nor does it carry the notices of the RAS. In 2024 MNRAS became a purely gold open access journal. History The first issue of MNRAS was published on 9 February 1827 as ''Monthly Notices of the Astronomical Society of London'' and it has been in continuous publication ever since. It took its current name from the second vo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Leon Mestel
Leon Mestel (5 August 1927 – 15 September 2017) was a British-Australian astronomer and astrophysicist and Emeritus Professor at the University of Sussex. His research interests were in the areas of star formation and structure, especially stellar magnetism and astrophysical magnetohydrodynamics. He was awarded both the Eddington Medal (1993) and the Gold Medal of the Royal Astronomical Society (for Astronomy, 2002). Following his retirement, he wrote several obituaries and biographical articles on physicists and astrophysicists. Early life and family Leon Mestel was born on 5 August 1927MESTEL, Prof. Leon Who's Who 2010, A & C Black, 2010; online edn, Oxford University Press, Dec 2009; online edn, Nov 2009. Retrieved 7 November 2010 in [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fred Hoyle
Sir Fred Hoyle (24 June 1915 – 20 August 2001) was an English astronomer who formulated the theory of stellar nucleosynthesis and was one of the authors of the influential B2FH paper, B2FH paper. He also held controversial stances on other scientific matters—in particular his rejection of the "Big Bang" theory (a term coined by him on BBC Radio) in favor of the "steady-state model", and his promotion of panspermia as the origin of life on Earth. He spent most of his working life at St John's College, Cambridge and served as the founding director of the Institute of Astronomy, Cambridge, Institute of Theoretical Astronomy at Cambridge. Hoyle also wrote science fiction novels, short stories and radio plays, co-created television serials, and co-authored twelve books with his son, Geoffrey Hoyle. Biography Early life Hoyle was born near Bingley in Gilstead, West Riding of Yorkshire, England. His father Ben Hoyle was a violinist and worked in the wool trade in Bradford, an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |