HOME



picture info

Bayesian Hierarchical Modeling
Bayesian hierarchical modelling is a statistical model written in multiple levels (hierarchical form) that estimates the parameters of the posterior distribution using the Bayesian method.Allenby, Rossi, McCulloch (January 2005)"Hierarchical Bayes Model: A Practitioner’s Guide"), then y_1 and y_2 are exchangeable. But the probability of selecting a red ball on the second draw given that the red ball has already been selected in the first draw is 0, and is not equal to the probability that the red ball is selected in the second draw which is equal to 1/2 (i.e. (y_2=1\mid y_1=1)=0 \ne P(y_2=1)= \frac/math>). Thus, y_1 and y_2 are not independent. If x_1, \ldots, x_n are independent and identically distributed, then they are exchangeable, but the converse is not necessarily true.Diaconis, Freedman (1980)“Finite exchangeable sequences” Annals of Probability, pp. 745–747 Infinite exchangeability Infinite exchangeability is the property that every finite subset of an infi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Statistical Model
A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of sample data (and similar data from a larger population). A statistical model represents, often in considerably idealized form, the data-generating process. A statistical model is usually specified as a mathematical relationship between one or more random variables and other non-random variables. As such, a statistical model is "a formal representation of a theory" ( Herman Adèr quoting Kenneth Bollen). All statistical hypothesis tests and all statistical estimators are derived via statistical models. More generally, statistical models are part of the foundation of statistical inference. Introduction Informally, a statistical model can be thought of as a statistical assumption (or set of statistical assumptions) with a certain property: that the assumption allows us to calculate the probability of any event. As an example, consider a pair of ordinary six ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conditional Probability
In probability theory, conditional probability is a measure of the probability of an event occurring, given that another event (by assumption, presumption, assertion or evidence) has already occurred. This particular method relies on event B occurring with some sort of relationship with another event A. In this event, the event B can be analyzed by a conditional probability with respect to A. If the event of interest is and the event is known or assumed to have occurred, "the conditional probability of given ", or "the probability of under the condition ", is usually written as or occasionally . This can also be understood as the fraction of probability B that intersects with A: P(A \mid B) = \frac. For example, the probability that any given person has a cough on any given day may be only 5%. But if we know or assume that the person is sick, then they are much more likely to be coughing. For example, the conditional probability that someone unwell (sick) is coughing might b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Grade Point Average
Grading in education is the process of applying standardized measurements for varying levels of achievements in a course. Grades can be assigned as letters (usually A through F), as a range (for example, 1 to 6), as a percentage, or as a number out of a possible total (often out of 100). In some countries, grades are averaged to create a grade point average (GPA). GPA is calculated by using the number of grade points a student earns in a given period of time. GPAs are often calculated for high school, undergraduate, and graduate students, and can be used by potential employers or educational institutions to assess and compare applicants. A cumulative grade point average (CGPA), sometimes referred to as just GPA, is a measure of performance for all of a student's courses. History Yale University historian George Wilson Pierson writes: "According to tradition the first grades issued at Yale (and possibly the first in the country) were given out in the year 1785, when Presiden ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Normal Distribution
In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu is the mean or expectation of the distribution (and also its median and mode), while the parameter \sigma is its standard deviation. The variance of the distribution is \sigma^2. A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate. Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known. Their importance is partly due to the central limit theorem. It states that, under some conditions, the average of many samples (observations) of a random variable with finite mean and variance is itself a random variable—whose distribution converges to a normal dist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tilde
The tilde () or , is a grapheme with several uses. The name of the character came into English from Spanish, which in turn came from the Latin ''titulus'', meaning "title" or "superscription". Its primary use is as a diacritic (accent) in combination with a base letter; but for historical reasons, it is also used in standalone form within a variety of contexts. History Use by medieval scribes The tilde was originally written over an omitted letter or several letters as a scribal abbreviation, or "mark of suspension" and "mark of contraction", shown as a straight line when used with capitals. Thus, the commonly used words ''Anno Domini'' were frequently abbreviated to ''Ao Dñi'', with an elevated terminal with a suspension mark placed over the "n". Such a mark could denote the omission of one letter or several letters. This saved on the expense of the scribe's labor and the cost of vellum and ink. Medieval European charters written in Latin are largely made up of such ab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Variance
In probability theory and statistics, variance is the expectation of the squared deviation of a random variable from its population mean or sample mean. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers is spread out from their average value. Variance has a central role in statistics, where some ideas that use it include descriptive statistics, statistical inference, hypothesis testing, goodness of fit, and Monte Carlo sampling. Variance is an important tool in the sciences, where statistical analysis of data is common. The variance is the square of the standard deviation, the second central moment of a distribution, and the covariance of the random variable with itself, and it is often represented by \sigma^2, s^2, \operatorname(X), V(X), or \mathbb(X). An advantage of variance as a measure of dispersion is that it is more amenable to algebraic manipulation than other measures of dispersion such as the expected absolute deviatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mean
There are several kinds of mean in mathematics, especially in statistics. Each mean serves to summarize a given group of data, often to better understand the overall value ( magnitude and sign) of a given data set. For a data set, the '' arithmetic mean'', also known as "arithmetic average", is a measure of central tendency of a finite set of numbers: specifically, the sum of the values divided by the number of values. The arithmetic mean of a set of numbers ''x''1, ''x''2, ..., x''n'' is typically denoted using an overhead bar, \bar. If the data set were based on a series of observations obtained by sampling from a statistical population, the arithmetic mean is the '' sample mean'' (\bar) to distinguish it from the mean, or expected value, of the underlying distribution, the '' population mean'' (denoted \mu or \mu_x).Underhill, L.G.; Bradfield d. (1998) ''Introstat'', Juta and Company Ltd.p. 181/ref> Outside probability and statistics, a wide range of other notions of m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hyperprior
In Bayesian statistics, a hyperprior is a prior distribution on a hyperparameter, that is, on a parameter of a prior distribution. As with the term ''hyperparameter,'' the use of ''hyper'' is to distinguish it from a prior distribution of a parameter of the model for the underlying system. They arise particularly in the use of hierarchical models. For example, if one is using a beta distribution to model the distribution of the parameter ''p'' of a Bernoulli distribution, then: * The Bernoulli distribution (with parameter ''p'') is the ''model'' of the underlying system; * ''p'' is a ''parameter'' of the underlying system (Bernoulli distribution); * The beta distribution (with parameters ''α'' and ''β'') is the ''prior'' distribution of ''p''; * ''α'' and ''β'' are parameters of the prior distribution (beta distribution), hence ''hyperparameters;'' * A prior distribution of ''α'' and ''β'' is thus a ''hyperprior.'' In principle, one can iterate the above: if the hyperpr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hyperparameters
In Bayesian statistics, a hyperparameter is a parameter of a prior distribution; the term is used to distinguish them from parameters of the model for the underlying system under analysis. For example, if one is using a beta distribution to model the distribution of the parameter ''p'' of a Bernoulli distribution, then: * ''p'' is a parameter of the underlying system (Bernoulli distribution), and * ''α'' and ''β'' are parameters of the prior distribution (beta distribution), hence ''hyper''parameters. One may take a single value for a given hyperparameter, or one can iterate and take a probability distribution on the hyperparameter itself, called a hyperprior. Purpose One often uses a prior which comes from a parametric family of probability distributions – this is done partly for explicitness (so one can write down a distribution, and choose the form by varying the hyperparameter, rather than trying to produce an arbitrary function), and partly so that one can ''vary'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Permutation
In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or process of changing the linear order of an ordered set. Permutations differ from combinations, which are selections of some members of a set regardless of order. For example, written as tuples, there are six permutations of the set , namely (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). These are all the possible orderings of this three-element set. Anagrams of words whose letters are different are also permutations: the letters are already ordered in the original word, and the anagram is a reordering of the letters. The study of permutations of finite sets is an important topic in the fields of combinatorics and group theory. Permutations are used in almost every branch of mathematics, and in many other fields of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Independently And Identically Distributed
In probability theory and statistics, a collection of random variables is independent and identically distributed if each random variable has the same probability distribution as the others and all are mutually independent. This property is usually abbreviated as ''i.i.d.'', ''iid'', or ''IID''. IID was first defined in statistics and finds application in different fields such as data mining and signal processing. Introduction In statistics, we commonly deal with random samples. A random sample can be thought of as a set of objects that are chosen randomly. Or, more formally, it’s “a sequence of independent, identically distributed (IID) random variables”. In other words, the terms ''random sample'' and ''IID'' are basically one and the same. In statistics, we usually say “random sample,” but in probability it’s more common to say “IID.” * Identically Distributed means that there are no overall trends–the distribution doesn’t fluctuate and all items in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]