HOME
*



picture info

Atom Localization
Atom localization deals with estimating the position of an atom using techniques of quantum optics with increasing precision. This field finds its origins in the thought experiment by Werner Heisenberg called Heisenberg's microscope, which is commonly used as an illustration of Heisenberg's Uncertainty relation in quantum mechanics textbooks. The techniques have matured enough to offer atom localization along all three spatial dimensions in the subwavelength domain. Atom localization techniques have been applied to other fields requiring precise control or measurement of the position of atom-like entities such as microscopy, nanolithography, optical trapping of atoms, optical lattices, and atom optics. Atom localization is based on employing atomic coherence to determine the position of the atom to a precision smaller than the wavelength of the light being used. This seemingly surpasses the Rayleigh limit of resolution and opens up possibilities of super-resolution for a variety ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quantum Optics
Quantum optics is a branch of atomic, molecular, and optical physics dealing with how individual quanta of light, known as photons, interact with atoms and molecules. It includes the study of the particle-like properties of photons. Photons have been used to test many of the counter-intuitive predictions of quantum mechanics, such as entanglement and teleportation, and are a useful resource for quantum information processing. History Light propagating in a restricted volume of space has its energy and momentum quantized according to an integer number of particles known as photons. Quantum optics studies the nature and effects of light as quantized photons. The first major development leading to that understanding was the correct modeling of the blackbody radiation spectrum by Max Planck in 1899 under the hypothesis of light being emitted in discrete units of energy. The photoelectric effect was further evidence of this quantization as explained by Albert Einstein in a 1905 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Interference
In physics, interference is a phenomenon in which two waves combine by adding their displacement together at every single point in space and time, to form a resultant wave of greater, lower, or the same amplitude. Constructive and destructive interference result from the interaction of waves that are correlated or coherent with each other, either because they come from the same source or because they have the same or nearly the same frequency. Interference effects can be observed with all types of waves, for example, light, radio, acoustic, surface water waves, gravity waves, or matter waves. Etymology The word ''interference'' is derived from the Latin words ''inter'' which means "between" and ''fere'' which means "hit or strike", and was coined by Thomas Young in 1801. Mechanisms The principle of superposition of waves states that when two or more propagating waves of the same type are incident on the same point, the resultant amplitude at that point is equal to t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mott Transitions
Mott is both an English surname and given name. Notable people with the name include: Surname B *Basil Mott (1859–1938), British civil engineer *Bitsy Mott (1918–2001), American baseball player C *Charles James Mott (1880–1918), British baritone * Charles Stewart Mott (1875–1973), American businessman *Christopher Mott, American academic D *Dan Mott (fl. 2000 – 2007), American actor E *Edward John Mott (1893–1967), British soldier *Elias Bertram Mott (1897–1961), American politician F * Frank Luther Mott (1886–1964), American historian * Frederick Walker Mott (1853–1926), British biochemist G *Gershom Mott (1822–1884), American army officer *Gordon Newell Mott (1812–1887), American Congressman from Nevada J *James Mott (1788–1868), American Quaker leader, husband of Lucretia *James Mott (New Jersey politician) (1739–1823), American Congressman from New Jersey *James Wheaton Mott (1883–1945), American Congressman from Oregon * Joe Mott (born 1956), Americ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bloch Theory Of Solids
Bloch is a surname of German origin. Notable people with this surname include: A–F * (1859-1914), French rabbi * Adele Bloch-Bauer (1881-1925), Austrian entrepreneur *Albert Bloch (1882–1961), American painter * (born 1972), German motor journalist and presenter * (1878–?), Russian lawyer, journalist, lawyer, and revolutionary *Alexandre Bloch (1857–1919), French painter * Alfred Bloch (born 1877), French footballer * (1915–1983), Swiss linguist * (1904–1979), German-British engineer *Aliza Bloch (born 1957), First female mayor of Bet Shemesh, Israel * (1768–1838), Swiss Benedictine monk * André Bloch (composer) (1873–1960), French composer and music educator *André Bloch (mathematician) (1893–1948), French mathematician * (1914–1942), French agent of the Special Operations Executive *Andreas Bloch (1860–1917), Norwegian painter, illustrator and costume designer *Andy Bloch (born 1969), American poker player *Anna Bloch (1868–1953), Danish actress *Armand B ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Laser Cooling
Laser cooling includes a number of techniques in which atoms, molecules, and small mechanical systems are cooled, often approaching temperatures near absolute zero. Laser cooling techniques rely on the fact that when an object (usually an atom) absorbs and re-emits a photon (a particle of light) its momentum changes. For an ensemble of particles, their thermodynamic temperature is proportional to the variance in their velocity. That is, more homogeneous velocities among particles corresponds to a lower temperature. Laser cooling techniques combine atomic spectroscopy with the aforementioned mechanical effect of light to compress the velocity distribution of an ensemble of particles, thereby cooling the particles. The 1997 Nobel Prize in Physics was awarded to Claude Cohen-Tannoudji, Steven Chu, and William Daniel Phillips "for development of methods to cool and trap atoms with laser light". Methods The first example of laser cooling, and also still the most common method (s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heisenberg Limit
In quantum mechanics, the uncertainty principle (also known as Heisenberg's uncertainty principle) is any of a variety of mathematical inequalities asserting a fundamental limit to the accuracy with which the values for certain pairs of physical quantities of a particle, such as position, ''x'', and momentum, ''p'', can be predicted from initial conditions. Such variable pairs are known as complementary variables or canonically conjugate variables; and, depending on interpretation, the uncertainty principle limits to what extent such conjugate properties maintain their approximate meaning, as the mathematical framework of quantum physics does not support the notion of simultaneously well-defined conjugate properties expressed by a single value. The uncertainty principle implies that it is in general not possible to predict the value of a quantity with arbitrary certainty, even if all initial conditions are specified. Introduced first in 1927 by the German physicist Werner H ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Standing Wave
In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with respect to time, and the oscillations at different points throughout the wave are in phase. The locations at which the absolute value of the amplitude is minimum are called nodes, and the locations where the absolute value of the amplitude is maximum are called antinodes. Standing waves were first noticed by Michael Faraday in 1831. Faraday observed standing waves on the surface of a liquid in a vibrating container. Franz Melde coined the term "standing wave" (German: ''stehende Welle'' or ''Stehwelle'') around 1860 and demonstrated the phenomenon in his classic experiment with vibrating strings. This phenomenon can occur because the medium is moving in the direction opposite to the movement of the wave, or it can arise in a stationary me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Electromagnetically Induced Transparency
Electromagnetically induced transparency (EIT) is a coherent optical nonlinearity which renders a medium transparent within a narrow spectral range around an absorption line. Extreme dispersion is also created within this transparency "window" which leads to "slow light", described below. It is in essence a quantum interference effect that permits the propagation of light through an otherwise opaque atomic medium. Observation of EIT involves two optical fields (highly coherent light sources, such as lasers) which are tuned to interact with three quantum states of a material. The "probe" field is tuned near resonance between two of the states and measures the absorption spectrum of the transition. A much stronger "coupling" field is tuned near resonance at a different transition. If the states are selected properly, the presence of the coupling field will create a spectral "window" of transparency which will be detected by the probe. The coupling laser is sometimes referr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ramsey Interferometry
Ramsey interferometry, also known as the separated oscillating fields method, is a form of particle interferometry that uses the phenomenon of magnetic resonance to measure transition frequencies of particles. It was developed in 1949 by Norman Ramsey, who built upon the ideas of his mentor, Isidor Isaac Rabi, who initially developed a technique for measuring particle transition frequencies. Ramsey's method is used today in atomic clocks and in the S.I. definition of the second. Most precision atomic measurements, such as modern atom interferometers and quantum logic gates, have a Ramsey-type configuration.Deutsch, Ivan. ''Quantum Optics I, PHYS 566, at the University of New Mexico.'' Problem Set 3 and Solutions. Fall 2013. A more modern method, known as Ramsey–Bordé interferometry uses a Ramsey configuration and was developed by French physicist Christian Bordé and is known as the Ramsey–Bordé interferometer. Bordé's main idea was to use atomic recoil to create a beam splitte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Resonance Fluorescence
Resonance fluorescence is the process in which a two-level atom system interacts with the quantum electromagnetic field if the field is driven at a frequency near to the natural frequency of the atom. General theory Typically the photon contained electromagnetic field is applied to the two-level atom through the use of a monochromatic laser. A two-level atom is a specific type of two-state system in which the atom can be found in the two possible states. The two possible states are if an electron is found in its ground state or the excited state. In many experiments an atom of lithium is used because it can be closely modeled to a two-level atom as the excited states of the singular electron are separated by large enough energy gaps to significantly reduce the possibility of the electron jumping to a higher excited state. Thus it allows for easier frequency tuning of the applied laser as frequencies further off resonance can be used while still driving the electron to jump to on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Autler–Townes Effect
In spectroscopy, the Autler–Townes effect (also known as AC Stark effect), is a dynamical Stark effect corresponding to the case when an oscillating electric field (e.g., that of a laser) is tuned in resonance (or close) to the transition frequency of a given spectral line, and resulting in a change of the shape of the absorption/ emission spectra of that spectral line. The AC Stark effect was discovered in 1955 by American physicists Stanley Autler and Charles Townes. It is the AC equivalent of the static Stark effect which splits the spectral lines of atoms and molecules in a constant electric field. Compared to its DC counterpart, the AC Stark effect is computationally more complex. While generally referring to atomic spectral shifts due to AC fields at any (single) frequency, the effect is more pronounced when the field frequency is close to that of a natural atomic or molecular dipole transition. In this case, the alternating field has the effect of splitting the two b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coherent Population Trapping
In atomic physics, a dark state refers to a state of an atom or molecule that cannot absorb (or emit) photons. All atoms and molecules are described by quantum states; different states can have different energies and a system can make a transition from one energy level to another by emitting or absorbing one or more photons. However, not all transitions between arbitrary states are allowed. A state that cannot absorb an incident photon is called a dark state. This can occur in experiments using laser light to induce transitions between energy levels, when atoms can spontaneously decay into a state that is not coupled to any other level by the laser light, preventing the atom from absorbing or emitting light from that state. A dark state can also be the result of quantum interference in a three-level system, when an atom is in a coherent superposition of two states, both of which are coupled by lasers at the right frequency to a third state. With the system in a particular super ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]