HOME





Alternating Series
In mathematics, an alternating series is an infinite series of terms that alternate between positive and negative signs. In capital-sigma notation this is expressed \sum_^\infty (-1)^n a_n or \sum_^\infty (-1)^ a_n with for all . Like any series, an alternating series is a convergent series if and only if the sequence of partial sums of the series converges to a limit. The alternating series test guarantees that an alternating series is convergent if the terms converge to 0 monotonically, but this condition is not necessary for convergence. Examples The geometric series − + − + ⋯ sums to . The alternating harmonic series has a finite sum but the harmonic series does not. The series 1-\frac+\frac-\ldots=\sum_^\infty\frac converges to \frac, but is not absolutely convergent. The Mercator series provides an analytic power series expression of the natural logarithm, given by \sum_^\infty \frac x^n = \ln (1+x),\;\;\;, x, \le1, x\ne-1. The functions si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gamma Function
In mathematics, the gamma function (represented by Γ, capital Greek alphabet, Greek letter gamma) is the most common extension of the factorial function to complex numbers. Derived by Daniel Bernoulli, the gamma function \Gamma(z) is defined for all complex numbers z except non-positive integers, and for every positive integer z=n, \Gamma(n) = (n-1)!\,.The gamma function can be defined via a convergent improper integral for complex numbers with positive real part: \Gamma(z) = \int_0^\infty t^ e^\textt, \ \qquad \Re(z) > 0\,.The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic function, holomorphic except at zero and the negative integers, where it has simple Zeros and poles, poles. The gamma function has no zeros, so the reciprocal gamma function is an entire function. In fact, the gamma function corresponds to the Mellin transform of the negative exponential functi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Series (mathematics)
In mathematics, a series is, roughly speaking, an addition of Infinity, infinitely many Addition#Terms, terms, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions. The mathematical properties of infinite series make them widely applicable in other quantitative disciplines such as physics, computer science, statistics and finance. Among the Ancient Greece, Ancient Greeks, the idea that a potential infinity, potentially infinite summation could produce a finite result was considered paradoxical, most famously in Zeno's paradoxes. Nonetheless, infinite series were applied practically by Ancient Greek mathematicians including Archimedes, for instance in the Quadrature of the Parabola, quadrature of the parabola. The mathematical side of Zeno's paradoxes was resolved using the concept of a limit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alternating Series
In mathematics, an alternating series is an infinite series of terms that alternate between positive and negative signs. In capital-sigma notation this is expressed \sum_^\infty (-1)^n a_n or \sum_^\infty (-1)^ a_n with for all . Like any series, an alternating series is a convergent series if and only if the sequence of partial sums of the series converges to a limit. The alternating series test guarantees that an alternating series is convergent if the terms converge to 0 monotonically, but this condition is not necessary for convergence. Examples The geometric series − + − + ⋯ sums to . The alternating harmonic series has a finite sum but the harmonic series does not. The series 1-\frac+\frac-\ldots=\sum_^\infty\frac converges to \frac, but is not absolutely convergent. The Mercator series provides an analytic power series expression of the natural logarithm, given by \sum_^\infty \frac x^n = \ln (1+x),\;\;\;, x, \le1, x\ne-1. The functions si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conditional Convergence
In mathematics, a series or integral is said to be conditionally convergent if it converges, but it does not converge absolutely. Definition More precisely, a series of real numbers \sum_^\infty a_n is said to converge conditionally if \lim_\,\sum_^m a_n exists (as a finite real number, i.e. not \infty or -\infty), but \sum_^\infty \left, a_n\ = \infty. A classic example is the alternating harmonic series given by 1 - + - + - \cdots =\sum\limits_^\infty , which converges to \ln (2), but is not absolutely convergent (see Harmonic series). Bernhard Riemann Georg Friedrich Bernhard Riemann (; ; 17September 182620July 1866) was a German mathematician who made profound contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the f ... proved that a conditionally convergent series may be rearranged to converge to any value at all, including ∞ or −∞; see Riemann series theorem. Agnew' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Direct Comparison Test
In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known. For series In calculus, the comparison test for series typically consists of a pair of statements about infinite series with non-negative ( real-valued) terms: * If the infinite series \sum b_n converges and 0 \le a_n \le b_n for all sufficiently large ''n'' (that is, for all n>N for some fixed value ''N''), then the infinite series \sum a_n also converges. * If the infinite series \sum b_n diverges and 0 \le b_n \le a_n for all sufficiently large ''n'', then the infinite series \sum a_n also diverges. Note that the series having larger terms is sometimes said to ''dominate'' (or ''eventually dominate'') the series with smaller terms. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Absolute Convergence
In mathematics, an infinite series of numbers is said to converge absolutely (or to be absolutely convergent) if the sum of the absolute values of the summands is finite. More precisely, a real or complex series \textstyle\sum_^\infty a_n is said to converge absolutely if \textstyle\sum_^\infty \left, a_n\ = L for some real number \textstyle L. Similarly, an improper integral of a function, \textstyle\int_0^\infty f(x)\,dx, is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if \textstyle\int_0^\infty , f(x), dx = L. A convergent series that is not absolutely convergent is called conditionally convergent. Absolute convergence is important for the study of infinite series, because its definition guarantees that a series will have some "nice" behaviors of finite sums that not all convergent series possess. For instance, rearrangements do not change the value of the sum, which is not necessarily true for conditionally converge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Series Acceleration
Series may refer to: People with the name * Caroline Series (born 1951), English mathematician, daughter of George Series * George Series (1920–1995), English physicist Arts, entertainment, and media Music * Series, the ordered sets used in serialism including tone rows * Harmonic series (music) * Serialism, including the twelve-tone technique Types of series in arts, entertainment, and media * Anime series * Book series * Comic book series * Film series * Manga series * Podcast series * Radio series * Television series * "Television series", the Australian, British, and a number of others countries' equivalent term for the North American " television season", a set of episodes produced by a television serial * Video game series * Web series Mathematics and science * Series (botany), a taxonomic rank between genus and species * Series (mathematics), the sum of a sequence of terms * Series (stratigraphy), a stratigraphic unit deposited during a certain i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Richard Johnsonbaugh
Richard F. Johnsonbaugh (born 1941) is an American mathematician and computer scientist. His interests include discrete mathematics and the history of mathematics. He is the author of several textbooks. Johnsonbaugh earned a bachelor's degree in mathematics from Yale University, and then moved to the University of Oregon for graduate study.Author biography from ''Discrete Mathematics'' (8th ed.) He completed his Ph.D. at Oregon in 1969. His dissertation, ''I. Classical Fundamental Groups and Covering Space Theory in the Setting of Cartan and Chevalley; II. Spaces and Algebras of Vector-Valued Differentiable Functions'', was supervised by Bertram Yood. He also has a second master's degree in computer science from the University of Illinois at Chicago. He is currently professor emeritus ''Emeritus/Emerita'' () is an honorary title granted to someone who retirement, retires from a position of distinction, most commonly an academic faculty position, but is allowed to continue us ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Error Bound
The approximation error in a given data value represents the significant discrepancy that arises when an exact, true value is compared against some approximation derived for it. This inherent error in approximation can be quantified and expressed in two principal ways: as an absolute error, which denotes the direct numerical magnitude of this discrepancy irrespective of the true value's scale, or as a relative error, which provides a scaled measure of the error by considering the absolute error in proportion to the exact data value, thus offering a context-dependent assessment of the error's significance. An approximation error can manifest due to a multitude of diverse reasons. Prominent among these are limitations related to computing machine precision, where digital systems cannot represent all real numbers with perfect accuracy, leading to unavoidable truncation or rounding. Another common source is inherent measurement error, stemming from the practical limitations of inst ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cauchy Criterion
The Cauchy convergence test is a method used to test infinite series for convergence. It relies on bounding sums of terms in the series. This convergence criterion is named after Augustin-Louis Cauchy who published it in his textbook '' Cours d'Analyse'' 1821. Statement A series \sum_^\infty a_i is convergent if and only if for every \varepsilon>0 there is a natural number N such that :, a_+a_+\cdots+a_, N and all p \geq 1. Explanation The test works because the space \R of real numbers and the space \C of complex numbers (with the metric given by the absolute value) are both complete. From here, the series is convergent if and only if the partial sums : s_n := \sum_^n a_i are a Cauchy sequence. Cauchy's convergence test can only be used in complete metric spaces (such as \R and \C), which are spaces where all Cauchy sequences converge. This is because we need only show that its elements become arbitrarily close to each other after a finite progression in the sequence to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cauchy Sequence
In mathematics, a Cauchy sequence is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all excluding a finite number of elements of the sequence are less than that given distance from each other. Cauchy sequences are named after Augustin-Louis Cauchy; they may occasionally be known as fundamental sequences. It is not sufficient for each term to become arbitrarily close to the term. For instance, in the sequence of square roots of natural numbers: a_n=\sqrt n, the consecutive terms become arbitrarily close to each other – their differences a_-a_n = \sqrt-\sqrt = \frac d. As a result, no matter how far one goes, the remaining terms of the sequence never get close to ; hence the sequence is not Cauchy. The utility of Cauchy sequences lies in the fact that in a complete metric space (one where all such sequences are known to converge to a limit), the criterion for convergence depends ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]