HOME



picture info

Almost Perfect Number
In mathematics, an almost perfect number (sometimes also called slightly defective or least deficient number) is a natural number ''n'' such that the sum of all divisors of ''n'' (the sum-of-divisors function ''σ''(''n'')) is equal to 2''n'' − 1, the sum of all proper divisors of ''n'', ''s''(''n'') = ''σ''(''n'') − ''n'', then being equal to ''n'' − 1. The only known almost perfect numbers are powers of 2 with non-negative exponents . Therefore the only known odd almost perfect number is 20 = 1, and the only known even almost perfect numbers are those of the form 2''k'' for some positive integer ''k''; however, it has not been shown that all almost perfect numbers are of this form. It is known that an odd almost perfect number greater than 1 would have at least six prime factors. If ''m'' is an odd almost perfect number then is a Descartes number. Moreover if ''a'' and ''b'' are positive odd integers such that b+3 and such that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe became the first president while Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance over concerns about competing with the '' American Journal of Mathematics''. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influentia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arithmetic Dynamics
Arithmetic dynamics is a field that amalgamates two areas of mathematics, dynamical systems and number theory. Part of the inspiration comes from complex dynamics, the study of the Iterated function, iteration of self-maps of the complex plane or other complex algebraic varieties. Arithmetic dynamics is the study of the number-theoretic properties of integer point, integer, rational point, rational, p-adic number, -adic, or algebraic points under repeated application of a polynomial or rational function. A fundamental goal is to describe arithmetic properties in terms of underlying geometric structures. ''Global arithmetic dynamics'' is the study of analogues of classical diophantine geometry in the setting of discrete dynamical systems, while ''local arithmetic dynamics'', also called p-adic dynamics, p-adic or nonarchimedean dynamics, is an analogue of complex dynamics in which one replaces the complex numbers by a -adic field such as or and studies chaotic behavior and the Fa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Unsolved Problems In Number Theory (book)
Unsolved Problems in Number Theory may refer to: * Unsolved problems in mathematics in the field of number theory. * A book with this title by Richard K. Guy published by Springer Verlag: **First edition 1981, 161 pages, **Second edition 1994, 285 pages, **Third edition 2004, 438 pages, Books with a similar title include: * ''Solved and Unsolved Problems in Number Theory'', by Daniel Shanks ** First edition, 1962 ** Second edition, 1978 ** Third edition, 1985, ** Fourth edition, 1993 * ''Old and New Unsolved Problems in Plane Geometry and Number Theory'', by Victor Klee and Stan Wagon Stanley Wagon is a Canadian-American mathematician, a professor emeritus of mathematics at Macalester College in Minnesota. He is the author of multiple books on number theory, geometry, and computational mathematics, and is also known for his sn ...
, 1991, . {{mathematical disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasiperfect Number
In mathematics, a quasiperfect number is a natural number for which the sum of all its divisors (the sum-of-divisors function \sigma(n)) is equal to 2n + 1. Equivalently, is the sum of its non-trivial divisors (that is, its divisors excluding 1 and ). No quasiperfect numbers have been found so far. The quasiperfect numbers are the abundant numbers of minimal abundance (which is 1). Theorems If a quasiperfect number exists, it must be an odd square number greater than 1035 and have at least seven distinct prime factor A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...s. Related For a perfect number the sum of all its divisors is equal to 2n. For an almost perfect number the sum of all its divisors is equal to 2n - 1. Numbers whose sum of factors equals 2n + 2 are known to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Perfect Number
In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28. The first four perfect numbers are 6 (number), 6, 28 (number), 28, 496 (number), 496 and 8128 (number), 8128. The sum of proper divisors of a number is called its aliquot sum, so a perfect number is one that is equal to its aliquot sum. Equivalently, a perfect number is a number that is half the sum of all of its positive divisors; in symbols, \sigma_1(n)=2n where \sigma_1 is the sum-of-divisors function. This definition is ancient, appearing as early as Euclid's Elements, Euclid's ''Elements'' (VII.22) where it is called (''perfect'', ''ideal'', or ''complete number''). Euclid also proved a formation rule (IX.36) whereby \frac is an even perfect number whenever q ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Number Theory
The ''Journal of Number Theory'' (''JNT'') is a monthly peer-reviewed scientific journal covering all aspects of number theory. The journal was established in 1969 by R.P. Bambah, P. Roquette, A. Ross, A. Woods, and H. Zassenhaus (Ohio State University). It is currently published monthly by Elsevier and the editor-in-chief is Dorian Goldfeld (Columbia University). According to the ''Journal Citation Reports'', the journal has a 2022 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a type of journal ranking. Journals with higher impact factor values are considered more prestigious or important within their field. The Impact Factor of a journa ... of 0.7. David Goss prize The David Goss Prize in Number theory, founded by the Journal of Number Theory, is awarded every two years, to mathematicians under the age of 35 for outstanding contributions to number theory. The prize is dedicated to the memory of David Goss who was the fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weird Number
In number theory, a weird number is a natural number that is abundant but not semiperfect. In other words, the sum of the proper divisors (divisors including 1 but not itself) of the number is greater than the number, but no subset of those divisors sums to the number itself. Examples The smallest weird number is 70. Its proper divisors are 1, 2, 5, 7, 10, 14, and 35; these sum to 74, but no subset of these sums to 70. The number 12, for example, is abundant but ''not'' weird, because the proper divisors of 12 are 1, 2, 3, 4, and 6, which sum to 16; but 2 + 4 + 6 = 12. The first several weird numbers are : 70, 836, 4030, 5830, 7192, 7912, 9272, 10430, 10570, 10792, 10990, 11410, 11690, 12110, 12530, 12670, 13370, 13510, 13790, 13930, 14770, ... . Properties Infinitely many weird numbers exist. For example, 70''p'' is weird for all primes ''p'' ≥ 149. In fact, the set of weird numbers has positive asymptotic density. It is not known if ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorization, factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow primality test, method of checking the primality of a given number , called trial division, tests whether is a multiple of any integer between 2 and . Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Descartes Number
In number theory, a Descartes number is an odd number which would have been an odd perfect number if one of its composite factors were prime. They are named after René Descartes who observed that the number would be an odd perfect number if only were a prime number, since the sum-of-divisors function for would satisfy, if 22021 were prime, :\begin \sigma(D) &= (3^2+3+1)\cdot(7^2+7+1)\cdot(11^2+11+1)\cdot(13^2+13+1)\cdot(22021+1) \\ &= (13)\cdot(3\cdot19)\cdot(7\cdot19)\cdot(3\cdot61)\cdot(22\cdot1001) \\ &= 3^2\cdot7\cdot13\cdot19^2\cdot61\cdot(22\cdot7\cdot11\cdot13) \\ &= 2 \cdot (3^2\cdot7^2\cdot11^2\cdot13^2) \cdot (19^2\cdot61) \\ &= 2 \cdot (3^2\cdot7^2\cdot11^2\cdot13^2) \cdot 22021 = 2D, \end where we ignore the fact that 22021 is composite (). A Descartes number is defined as an odd number where and are coprime and , whence is taken as a 'spoof' prime. The example given is the only one currently known. If is an odd almost perfect number, that is, and is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]