HOME





Alias Analysis
Alias analysis is a technique in compiler theory, used to determine if a storage location may be accessed in more than one way. Two pointers are said to be aliased if they point to the same location. Alias analysis techniques are usually classified by flow-sensitivity and context-sensitivity. They may determine may-alias or must-alias information. The term alias analysis is often used interchangeably with points-to analysis, a specific case. Alias analysers intend to make and compute useful information for understanding aliasing in programs. Overview In general, alias analysis determines whether or not separate memory references point to the same area of memory. This allows the compiler to determine what variables in the program will be affected by a statement. For example, consider the following section of code that accesses members of structures: p.foo = 1; q.foo = 2; i = p.foo + 3; There are three possible alias cases here: #The variables p and q cannot alias (i.e., t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compiler Theory
In computing, a compiler is a computer program that Translator (computing), translates computer code written in one programming language (the ''source'' language) into another language (the ''target'' language). The name "compiler" is primarily used for programs that translate source code from a high-level programming language to a lower level language, low-level programming language (e.g. assembly language, object code, or machine code) to create an executable program.Compilers: Principles, Techniques, and Tools by Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman - Second Edition, 2007 There are many different types of compilers which produce output in different useful forms. A ''cross-compiler'' produces code for a different Central processing unit, CPU or operating system than the one on which the cross-compiler itself runs. A ''bootstrap compiler'' is often a temporary compiler, used for compiling a more permanent or better optimised compiler for a language. Related software ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Aliasing (computing)
In computing, aliasing describes a situation in which a data location in memory can be accessed through different symbolic names in the program. Thus, modifying the data through one name implicitly modifies the values associated with all aliased names, which may not be expected by the programmer. As a result, aliasing makes it particularly difficult to understand, analyze and optimize programs. Aliasing analysers intend to make and compute useful information for understanding aliasing in programs. Aliased pointers Aliasing can occur in any language that can refer to one location in memory with more than one name (for example, with pointers). This is a common problem with functions that accept pointer arguments, and their tolerance (or the lack thereof) for aliasing must be carefully documented, particularly for functions that perform complex manipulations on memory areas passed to them. Specified aliasing Controlled aliasing behaviour may be desirable in some cases (that is, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pointer Analysis
In computer science, pointer analysis, or points-to analysis, is a static code analysis technique that establishes which pointer (computer programming), pointers, or Heap (data structure), heap references, can point to which Variable (computer science), variables, or Memory address, storage locations. It is often a component of more complex analyses such as escape analysis. A closely related technique is shape analysis (software), shape analysis. This is the most common colloquial use of the term. A secondary use has ''pointer analysis'' be the collective name for both points-to analysis, defined as above, and alias analysis. Points-to and alias analysis are closely related but not always equivalent problems. Example Consider the following C program: int *id(int* p) void main(void) A pointer analysis computes a mapping from pointer expressions to a set of allocation sites of objects they may point to. For the above program, an idealized, fully precise analysis would compu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Thread (computing)
In computer science, a thread of execution is the smallest sequence of programmed instructions that can be managed independently by a scheduler, which is typically a part of the operating system. In many cases, a thread is a component of a process. The multiple threads of a given process may be executed concurrently (via multithreading capabilities), sharing resources such as memory, while different processes do not share these resources. In particular, the threads of a process share its executable code and the values of its dynamically allocated variables and non- thread-local global variables at any given time. The implementation of threads and processes differs between operating systems. History Threads made an early appearance under the name of "tasks" in IBM's batch processing operating system, OS/360, in 1967. It provided users with three available configurations of the OS/360 control system, of which Multiprogramming with a Variable Number of Tasks (MVT) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Memory Model (programming)
In computing, a memory model describes the interactions of threads through memory and their shared use of the data. History and significance A memory model allows a compiler to perform many important optimizations. Compiler optimizations like loop fusion move statements in the program, which can influence the order of read and write operations of potentially shared variables. Changes in the ordering of reads and writes can cause race conditions. Without a memory model, a compiler may not apply such optimizations to multi-threaded programs at all, or it may apply optimizations that are incompatible with multi-threading, leading to bugs. Modern programming languages like Java therefore implement a memory model. The memory model specifies synchronization barriers that are established via special, well-defined synchronization operations such as acquiring a lock by entering a synchronized block or method. The memory model stipulates that changes to the values of shared variables o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Out-of-order Execution
In computer engineering, out-of-order execution (or more formally dynamic execution) is an instruction scheduling paradigm used in high-performance central processing units to make use of instruction cycles that would otherwise be wasted. In this paradigm, a processor executes instructions in an order governed by the availability of input data and execution units, rather than by their original order in a program. In doing so, the processor can avoid being idle while waiting for the preceding instruction to complete and can, in the meantime, process the next instructions that are able to run immediately and independently. History Out-of-order execution is a restricted form of dataflow architecture, which was a major research area in computer architecture in the 1970s and early 1980s. Early use in supercomputers The first machine to use out-of-order execution was the CDC 6600 (1964), designed by James E. Thornton, which uses a scoreboard to avoid conflicts. It permits ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Memory Barrier
In computing, a memory barrier, also known as a membar, memory fence or fence instruction, is a type of barrier instruction that causes a central processing unit (CPU) or compiler to enforce an ordering constraint on memory operations issued before and after the barrier instruction. This typically means that operations issued prior to the barrier are guaranteed to be performed before operations issued after the barrier. Memory barriers are necessary because most modern CPUs employ performance optimizations that can result in out-of-order execution. This reordering of memory operations (loads and stores) normally goes unnoticed within a single thread of execution, but can cause unpredictable behavior in concurrent programs and device drivers unless carefully controlled. The exact nature of an ordering constraint is hardware dependent and defined by the architecture's memory ordering model. Some architectures provide multiple barriers for enforcing different ordering constra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Intermediate Language
An intermediate representation (IR) is the data structure or code used internally by a compiler or virtual machine to represent source code. An IR is designed to be conducive to further processing, such as optimization and translation. A "good" IR must be ''accurate'' – capable of representing the source code without loss of information – and ''independent'' of any particular source or target language. An IR may take one of several forms: an in-memory data structure, or a special tuple- or stack-based code readable by the program. In the latter case it is also called an ''intermediate language''. A canonical example is found in most modern compilers. For example, the CPython interpreter transforms the linear human-readable text representing a program into an intermediate graph structure that allows flow analysis and re-arrangement before execution. Use of an intermediate representation such as this allows compiler systems like the GNU Compiler Collection and LLVM to be u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Type Safe
In computer science, type safety and type soundness are the extent to which a programming language discourages or prevents type errors. Type safety is sometimes alternatively considered to be a property of facilities of a computer language; that is, some facilities are type-safe and their usage will not result in type errors, while other facilities in the same language may be type-unsafe and a program using them may encounter type errors. The behaviors classified as type errors by a given programming language are usually those that result from attempts to perform operations on values that are not of the appropriate data type, e.g., adding a string to an integer when there's no definition on how to handle this case. This classification is partly based on opinion. Type enforcement can be static, catching potential errors at compile time, or dynamic, associating type information with values at run-time and consulting them as needed to detect imminent errors, or a combination of both ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ML (programming Language)
ML (Meta Language) is a general-purpose, high-level, functional programming language. It is known for its use of the polymorphic Hindley–Milner type system, which automatically assigns the data types of most expressions without requiring explicit type annotations ( type inference), and ensures type safety; there is a formal proof that a well-typed ML program does not cause runtime type errors. ML provides pattern matching for function arguments, garbage collection, imperative programming, call-by-value and currying. While a general-purpose programming language, ML is used heavily in programming language research and is one of the few languages to be completely specified and verified using formal semantics. Its types and pattern matching make it well-suited and commonly used to operate on other formal languages, such as in compiler writing, automated theorem proving, and formal verification. Overview Features of ML include a call-by-value evaluation strategy, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Haskell (programming Language)
Haskell () is a General-purpose programming language, general-purpose, static typing, statically typed, purely functional programming, purely functional programming language with type inference and lazy evaluation. Designed for teaching, research, and industrial applications, Haskell pioneered several programming language #Features, features such as type classes, which enable type safety, type-safe operator overloading, and Monad (functional programming), monadic input/output (IO). It is named after logician Haskell Curry. Haskell's main implementation is the Glasgow Haskell Compiler (GHC). Haskell's Semantics (computer science), semantics are historically based on those of the Miranda (programming language), Miranda programming language, which served to focus the efforts of the initial Haskell working group. The last formal specification of the language was made in July 2010, while the development of GHC continues to expand Haskell via language extensions. Haskell is used in a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Java (programming Language)
Java is a High-level programming language, high-level, General-purpose programming language, general-purpose, Memory safety, memory-safe, object-oriented programming, object-oriented programming language. It is intended to let programmers ''write once, run anywhere'' (Write once, run anywhere, WORA), meaning that compiler, compiled Java code can run on all platforms that support Java without the need to recompile. Java applications are typically compiled to Java bytecode, bytecode that can run on any Java virtual machine (JVM) regardless of the underlying computer architecture. The syntax (programming languages), syntax of Java is similar to C (programming language), C and C++, but has fewer low-level programming language, low-level facilities than either of them. The Java runtime provides dynamic capabilities (such as Reflective programming, reflection and runtime code modification) that are typically not available in traditional compiled languages. Java gained popularity sh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]