Algebraic Homotopy
   HOME





Algebraic Homotopy
In mathematics, algebraic homotopy is a research program on homotopy theory proposed by J.H.C. Whitehead in his 1950 ICM talk, where he described it as: In spirit, the program is somehow similar to Grothendieck's homotopy hypothesis In category theory, a branch of mathematics, Grothendieck's homotopy hypothesis states, homotopy theory speaking, that the ∞-groupoids are space (mathematics), spaces. One version of the hypothesis was claimed to be proved in the 1991 paper by M .... However, according to Ronnie Brown, "Looking again at Esquisses d'un Progamme, it seems that programme has currently little relation to Whitehead's."https://mathoverflow.net/questions/266738/current-status-of-grothendiecks-homotopy-hypothesis-and-whiteheads-algebraic-h References * https://ncatlab.org/nlab/show/algebraic+homotopy Handbook of Algebraic Topologyedited by I.M. James Further reading * https://ncatlab.org/nlab/show/Algebraic+Homotopy, an entry about a book {{topology-stub Homotopy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homotopy Theory
In mathematics, homotopy theory is a systematic study of situations in which Map (mathematics), maps can come with homotopy, homotopies between them. It originated as a topic in algebraic topology, but nowadays is learned as an independent discipline. Applications to other fields of mathematics Besides algebraic topology, the theory has also been used in other areas of mathematics such as: * Algebraic geometry (e.g., A1 homotopy theory, A1 homotopy theory) * Category theory (specifically the study of higher category theory, higher categories) Concepts Spaces and maps In homotopy theory and algebraic topology, the word "space" denotes a topological space. In order to avoid Pathological (mathematics), pathologies, one rarely works with arbitrary spaces; instead, one requires spaces to meet extra constraints, such as being Category of compactly generated weak Hausdorff spaces, compactly generated weak Hausdorff or a CW complex. In the same vein as above, a "Map (mathematics), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homotopy Hypothesis
In category theory, a branch of mathematics, Grothendieck's homotopy hypothesis states, homotopy theory speaking, that the ∞-groupoids are space (mathematics), spaces. One version of the hypothesis was claimed to be proved in the 1991 paper by Mikhail Kapranov, Kapranov and Vladimir Voevodsky, Voevodsky. Their proof turned out to be flawed and their result in the form interpreted by Carlos Simpson is now known as the Simpson conjecture. In higher category theory, one considers a space-valued presheaf instead of a presheaf (category theory), set-valued presheaf in ordinary category theory. In view of homotopy hypothesis, a space here can be taken to an ∞-groupoid. Formulations A precise formulation of the hypothesis very strongly depends on the definition of an ∞-groupoid. One definition is that, mimicking the ordinary category case, an ∞-groupoid is an ∞-category in which each morphism is invertible or equivalently its homotopy category of an ∞-category, homotopy cat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homotopy Theory
In mathematics, homotopy theory is a systematic study of situations in which Map (mathematics), maps can come with homotopy, homotopies between them. It originated as a topic in algebraic topology, but nowadays is learned as an independent discipline. Applications to other fields of mathematics Besides algebraic topology, the theory has also been used in other areas of mathematics such as: * Algebraic geometry (e.g., A1 homotopy theory, A1 homotopy theory) * Category theory (specifically the study of higher category theory, higher categories) Concepts Spaces and maps In homotopy theory and algebraic topology, the word "space" denotes a topological space. In order to avoid Pathological (mathematics), pathologies, one rarely works with arbitrary spaces; instead, one requires spaces to meet extra constraints, such as being Category of compactly generated weak Hausdorff spaces, compactly generated weak Hausdorff or a CW complex. In the same vein as above, a "Map (mathematics), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]