Algebra With A Straightening Law
In mathematics, a Hodge algebra or algebra with straightening law is a commutative algebra that is a free module over some ring ''R'', together with a given basis similar to the basis of standard monomials of the coordinate ring of a Grassmannian. Hodge algebras were introduced by , who named them after W. V. D. Hodge Sir William Vallance Douglas Hodge (; 17 June 1903 – 7 July 1975) was a British mathematician, specifically a geometer. His discovery of far-reaching topological relations between algebraic geometry and differential geometry—an area no .... References * Commutative algebra {{commutative-algebra-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commutative Algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideal (ring theory), ideals, and module (mathematics), modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers \mathbb; and p-adic number, ''p''-adic integers. Commutative algebra is the main technical tool of algebraic geometry, and many results and concepts of commutative algebra are strongly related with geometrical concepts. The study of rings that are not necessarily commutative is known as noncommutative algebra; it includes ring theory, representation theory, and the theory of Banach algebras. Overview Commutative algebra is essentially the study of the rings occurring in algebraic number theory and algebraic geometry. Several concepts of commutative algebras have been developed in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Free Module
In mathematics, a free module is a module that has a ''basis'', that is, a generating set that is linearly independent. Every vector space is a free module, but, if the ring of the coefficients is not a division ring (not a field in the commutative case), then there exist non-free modules. Given any set and ring , there is a free -module with basis , which is called the ''free module on'' or ''module of formal'' -''linear combinations'' of the elements of . A free abelian group is precisely a free module over the ring \Z of integers. Definition For a ring R and an R- module M, the set E\subseteq M is a basis for M if: * E is a generating set for M; that is to say, every element of M is a finite sum of elements of E multiplied by coefficients in R; and * E is linearly independent: for every set \\subset E of distinct elements, r_1 e_1 + r_2 e_2 + \cdots + r_n e_n = 0_M implies that r_1 = r_2 = \cdots = r_n = 0_R (where 0_M is the zero element of M and 0_R is the zer ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ring (mathematics)
In mathematics, a ring is an algebraic structure consisting of a set with two binary operations called ''addition'' and ''multiplication'', which obey the same basic laws as addition and multiplication of integers, except that multiplication in a ring does not need to be commutative. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. A ''ring'' may be defined as a set that is endowed with two binary operations called ''addition'' and ''multiplication'' such that the ring is an abelian group with respect to the addition operator, and the multiplication operator is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors apply the term ''ring'' to a further generalization, often called a '' rng'', that omits the requirement for a multiplicative identity, and instead call the structure defi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Standard Monomial
In algebraic geometry, standard monomial theory describes the sections of a line bundle over a generalized flag variety or Schubert variety of a reductive algebraic group by giving an explicit basis of elements called standard monomials. Many of the results have been extended to Kac–Moody algebras and their groups. There are monographs on standard monomial theory by and and survey articles by and . One of important open problems is to give a completely geometric construction of the theory.M. Brion and V. Lakshmibai : A geometric approach to standard monomial theory, Represent. Theory 7 (2003), 651–680. History introduced monomials associated to standard Young tableaux. (see also ) used Young's monomials, which he called standard power products, named after standard tableaux, to give a basis for the homogeneous coordinate rings of complex Grassmannians. initiated a program, called standard monomial theory, to extend Hodge's work to varieties ''G''/''P'', for ''P'' any ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Coordinate Ring
In algebraic geometry, an affine variety or affine algebraic variety is a certain kind of algebraic variety that can be described as a subset of an affine space. More formally, an affine algebraic set is the set of the common zeros over an algebraically closed field of some family of polynomials in the polynomial ring k _1, \ldots,x_n An affine variety is an affine algebraic set which is not the union of two smaller algebraic sets; algebraically, this means that (the radical of) the ideal generated by the defining polynomials is prime. One-dimensional affine varieties are called affine algebraic curves, while two-dimensional ones are affine algebraic surfaces. Some texts use the term ''variety'' for any algebraic set, and ''irreducible variety'' an algebraic set whose defining ideal is prime (affine variety in the above sense). In some contexts (see, for example, Hilbert's Nullstellensatz), it is useful to distinguish the field in which the coefficients are considered, fr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Grassmannian
In mathematics, the Grassmannian \mathbf_k(V) (named in honour of Hermann Grassmann) is a differentiable manifold that parameterizes the set of all k-dimension (vector space), dimensional linear subspaces of an n-dimensional vector space V over a field (mathematics), field K that has a differentiable structure. For example, the Grassmannian \mathbf_1(V) is the space of lines through the origin in V, so it is the same as the projective space \mathbf(V) of one dimension lower than V. When V is a real number, real or complex number, complex vector space, Grassmannians are compact space, compact smooth manifolds, of dimension k(n-k). In general they have the structure of a nonsingular projective algebraic variety. The earliest work on a non-trivial Grassmannian is due to Julius Plücker, who studied the set of projective lines in real projective 3-space, which is equivalent to \mathbf_2(\mathbf^4), parameterizing them by what are now called Plücker coordinates. (See below.) Herma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Société Mathématique De France
Groupe Lactalis S.A. (doing business as Lactalis) is a French multinational dairy products corporation, owned by the Besnier family and based in Laval, Mayenne, France. The company's former name was Besnier S.A. Lactalis is the largest dairy products group in the world, and is the second largest food products group in France, behind Danone. It owns brands such as Parmalat, Président, Kraft Natural Cheese, Siggi's Dairy, Skånemejerier, Rachel's Organic, and Stonyfield Farm. History André Besnier started a small cheesemaking company in 1933 and launched its '' Président'' brand of Camembert in 1968. In 1990, it acquired Group Bridel (2,300 employees, 10 factories, fourth-largest French dairy group) with a presence in 60 countries. In 1992, it acquired United States cheese company Sorrento. In 1999, ''la société Besnier'' became ''le groupe Lactalis'' owned by Belgian holding company BSA International SA. In 2006, they bought Italian group Galbani, and in 2008, bough ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |