Airy Wave Theory
In fluid dynamics, Airy wave theory (often referred to as linear wave theory) gives a linear system, linearised description of the wave propagation, propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, Incompressible flow, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century. Airy wave theory is often applied in Offshore construction, ocean engineering and coastal engineering for the modelling of random sea states – giving a description of the wave kinematics and dynamics (mechanics), dynamics of high-enough accuracy for many purposes. Further, several perturbation theory, second-order nonlinear system, nonlinear properties of surface gravity waves, and their propagation, can be estimated from its results. Airy wave theory is also a good approximation for tsunami waves in the ocean, befo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fluid Dynamics
In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases. It has several subdisciplines, including (the study of air and other gases in motion) and (the study of water and other liquids in motion). Fluid dynamics has a wide range of applications, including calculating forces and moment (physics), moments on aircraft, determining the mass flow rate of petroleum through pipeline transport, pipelines, weather forecasting, predicting weather patterns, understanding nebulae in interstellar space, understanding large scale Geophysical fluid dynamics, geophysical flows involving oceans/atmosphere and Nuclear weapon design, modelling fission weapon detonation. Fluid dynamics offers a systematic structure—which underlies these practical disciplines—that embraces empirical and semi-empirical laws derived from flow measurement and used to solve practical problems. The solution to a fl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nonlinear System
In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other scientists since most systems are inherently nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems. Typically, the behavior of a nonlinear system is described in mathematics by a nonlinear system of equations, which is a set of simultaneous equations in which the unknowns (or the unknown functions in the case of differential equations) appear as variables of a polynomial of degree higher than one or in the argument of a function which is not a polynomial of degree one. In other words, in a nonlinear system of equations, the equation(s) to be solved cannot be written as a lin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Wave Turbulence
In continuum mechanics, wave turbulence is a set of nonlinear waves deviated far from thermal equilibrium. Such a state is usually accompanied by dissipation. It is either decaying turbulence or requires an external source of energy to sustain it. Examples are waves on a fluid surface excited by winds or ships, and waves in plasma excited by electromagnetic waves etc. Appearance External sources by some resonant mechanism usually excite waves with frequencies and wavelengths in some narrow interval. For example, shaking a container with frequency ω excites surface waves with frequency ω/2 ( parametric resonance, discovered by Michael Faraday). When wave amplitudes are small – which usually means that the wave is far from breaking – only those waves exist that are directly excited by an external source. When, however, wave amplitudes are not very small (for surface waves: when the fluid surface is inclined by more than few degrees) waves with different frequencies st ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stokes Boundary Layer
In fluid dynamics, Stokes problem also known as Stokes second problem or sometimes referred to as Stokes boundary layer or Oscillating boundary layer is a problem of determining the flow created by an oscillating solid surface, named after Sir George Stokes. This is considered one of the simplest unsteady problems that has an exact solution for the Navier–Stokes equations. In turbulent flow, this is still named a Stokes boundary layer, but now one has to rely on experiments, numerical simulations or approximate methods in order to obtain useful information on the flow. Flow description Consider an infinitely long plate which is oscillating with a velocity U \cos \omega t in the x direction, which is located at y=0 in an infinite domain of fluid, where \omega is the frequency of the oscillations. The incompressible Navier–Stokes equations reduce to :\frac = \nu \frac where \nu is the kinematic viscosity. The pressure gradient does not enter into the problem. The initial, n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Flow Separation
In fluid dynamics, flow separation or boundary layer separation is the detachment of a boundary layer from a surface into a wake. A boundary layer exists whenever there is relative movement between a fluid and a solid surface with viscous forces present in the layer of fluid close to the surface. The flow can be externally, around a body, or internally, in an enclosed passage. Boundary layers can be either laminar or turbulent. A reasonable assessment of whether the boundary layer will be laminar or turbulent can be made by calculating the Reynolds number of the local flow conditions. Separation occurs in flow that is slowing down, with pressure increasing, after passing the thickest part of a streamline body or passing through a widening passage, for example. Flowing against an increasing pressure is known as flowing in an adverse pressure gradient. The boundary layer separates when it has travelled far enough in an adverse pressure gradient that the speed of the bounda ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Turbulence
In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to laminar flow, which occurs when a fluid flows in parallel layers with no disruption between those layers. Turbulence is commonly observed in everyday phenomena such as surf, fast flowing rivers, billowing storm clouds, or smoke from a chimney, and most fluid flows occurring in nature or created in engineering applications are turbulent. Turbulence is caused by excessive kinetic energy in parts of a fluid flow, which overcomes the damping effect of the fluid's viscosity. For this reason, turbulence is commonly realized in low viscosity fluids. In general terms, in turbulent flow, unsteady vortices appear of many sizes which interact with each other, consequently drag due to friction effects increases. The onset of turbulence can be predicted by the dimensionless Reynolds number, the ratio of kinetic energy to viscous damping ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vorticity
In continuum mechanics, vorticity is a pseudovector (or axial vector) field that describes the local spinning motion of a continuum near some point (the tendency of something to rotate), as would be seen by an observer located at that point and traveling along with the flow. It is an important quantity in the dynamical theory of fluids and provides a convenient framework for understanding a variety of complex flow phenomena, such as the formation and motion of vortex rings. Mathematically, the vorticity \boldsymbol is the curl of the flow velocity \mathbf v: :\boldsymbol \equiv \nabla \times \mathbf v\,, where \nabla is the nabla operator. Conceptually, \boldsymbol could be determined by marking parts of a continuum in a small neighborhood of the point in question, and watching their ''relative'' displacements as they move along the flow. The vorticity \boldsymbol would be twice the mean angular velocity vector of those particles relative to their center of mass, orie ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Viscosity
Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for example, syrup has a higher viscosity than water. Viscosity is defined scientifically as a force multiplied by a time divided by an area. Thus its SI units are newton-seconds per metre squared, or pascal-seconds. Viscosity quantifies the internal friction, frictional force between adjacent layers of fluid that are in relative motion. For instance, when a viscous fluid is forced through a tube, it flows more quickly near the tube's center line than near its walls. Experiments show that some stress (physics), stress (such as a pressure difference between the two ends of the tube) is needed to sustain the flow. This is because a force is required to overcome the friction between the layers of the fluid which are in relative motion. For a tube ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Velocity Potential
A velocity potential is a scalar potential used in potential flow theory. It was introduced by Joseph-Louis Lagrange in 1788. It is used in continuum mechanics, when a continuum occupies a simply-connected region and is irrotational. In such a case, \nabla \times \mathbf =0 \,, where denotes the flow velocity. As a result, can be represented as the gradient of a scalar function : \mathbf = \nabla \varphi\ = \frac \mathbf + \frac \mathbf + \frac \mathbf \,. is known as a velocity potential for . A velocity potential is not unique. If is a velocity potential, then is also a velocity potential for , where is a scalar function of time and can be constant. Velocity potentials are unique up to a constant, or a function solely of the temporal variable. The Laplacian of a velocity potential is equal to the divergence of the corresponding flow. Hence if a velocity potential satisfies Laplace equation, the flow is incompressible. Unlike a stream function, a velocity potential ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Potential Flow
In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity, i.e., for an inviscid fluid and with no vorticity present in the flow. Potential flow describes the velocity field as the gradient of a scalar function: the velocity potential. As a result, a potential flow is characterized by an Conservative vector field#Irrotational vector fields, irrotational velocity field, which is a valid approximation for several applications. The irrotationality of a potential flow is due to the Curl (mathematics), curl of the gradient of a Scalar (physics), scalar always being equal to zero. In the case of an incompressible flow the velocity potential satisfies Laplace's equation, and potential theory is applicable. However, potential flows also have been used to describe compressible flows and Hele-Shaw flows. The potential flow approach occurs in the modeling of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dispersion Gravity 1
Dispersion may refer to: Economics and finance *Dispersion (finance), a measure for the statistical distribution of portfolio returns *Price dispersion, a variation in prices across sellers of the same item *Wage dispersion, the amount of variation in wages encountered in an economy *Dispersed knowledge, notion that any one person is unable to perceive all economic forces Science and mathematics Mathematics *Statistical dispersion, a quantifiable variation of measurements of differing members of a population **Index of dispersion, a normalized measure of the dispersion of a probability distribution * Dispersion point, a point in a topological space the removal of which leaves the space highly disconnected Physics *The dependence of wave velocity on frequency or wavelength: **Dispersion (optics), for light waves **Dispersion (water waves), for water waves ** Acoustic dispersion, for sound waves **Dispersion relation, the mathematical description of dispersion in a system **Modal d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sine Wave Amplitude
In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle \theta, the sine and cosine functions are denoted as \sin(\theta) and \cos(\theta). The definitions of sine and cosine have been extended to any real number, real value in terms of the lengths of certain line segments in a unit circle. More modern definitions express the sine and cosine as Series (mathematics), infinite series, or as the solutions of certain differential equations, allowing their extension to arbitrary positive and negative values and even to complex numbers. The sine and cosine functions are commonly used to model periodic function, periodic pheno ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |