Affine Root System
In mathematics, an affine root system is a root system of affine-linear functions on a Euclidean space. They are used in the classification of affine Lie algebras and superalgebras, and semisimple ''p''-adic algebraic groups, and correspond to families of Macdonald polynomials. The reduced affine root systems were used by Kac and Moody in their work on Kac–Moody algebras. Possibly non-reduced affine root systems were introduced and classified by and (except that both these papers accidentally omitted the Dynkin diagram ). Definition Let ''E'' be an affine space and ''V'' the vector space of its translations. Recall that ''V'' acts faithfully and transitively on ''E''. In particular, if u,v \in E, then it is well defined an element in ''V'' denoted as u-v which is the only element w such that v+w=u. Now suppose we have a scalar product (\cdot,\cdot) on ''V''. This defines a metric on ''E'' as d(u,v)=\vert(u-v,u-v)\vert. Consider the vector space ''F'' of affine-linear fu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
G2 Affine Chamber
G, or g, is the seventh letter of the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages, and others worldwide. Its name in English is ''gee'' (pronounced ), plural ''gees''. The lowercase version can be written in two forms: the single-storey (sometimes "opentail") and the double-storey (sometimes "looptail") . The former is commonly used in handwriting and fonts based on it, especially fonts intended to be read by children. History The evolution of the Latin alphabet's G can be traced back to the Latin alphabet's predecessor, the Greek alphabet. The voiced velar stop was represented by the third letter of the Greek alphabet, gamma (Γ), which was later adopted by the Etruscan language. Latin then borrowed this "rounded form" of gamma, C, to represent the same sound in words such as ''recei'', which was likely an early dative form of '' rex'', meaning "king", as found in an "early Latin inscription." Over time, howe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Affine Space
In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related to parallelism and ratio of lengths for parallel line segments. Affine space is the setting for affine geometry. As in Euclidean space, the fundamental objects in an affine space are called '' points'', which can be thought of as locations in the space without any size or shape: zero-dimensional. Through any pair of points an infinite straight line can be drawn, a one-dimensional set of points; through any three points that are not collinear, a two-dimensional plane can be drawn; and, in general, through points in general position, a -dimensional flat or affine subspace can be drawn. Affine space is characterized by a notion of pairs of parallel lines that lie within the same plane but never meet each-other (non-parallel lines wi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Discrete Groups
Discrete may refer to: *Discrete particle or quantum in physics, for example in quantum theory *Discrete device, an electronic component with just one circuit element, either passive or active, other than an integrated circuit *Discrete group, a group with the discrete topology *Discrete category, category whose only arrows are identity arrows *Discrete mathematics, the study of structures without continuity *Discrete optimization, a branch of optimization in applied mathematics and computer science *Discrete probability distribution, a random variable that can be counted *Discrete space, a simple example of a topological space *Discrete spline interpolation, the discrete analog of ordinary spline interpolation *Discrete time, non-continuous time, which results in discrete-time samples *Discrete variable In mathematics and statistics, a quantitative variable may be continuous or discrete. If it can take on two real values and all the values between them, the variable is con ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inventiones Mathematicae
''Inventiones Mathematicae'' is a mathematical journal published monthly by Springer Science+Business Media. It was established in 1966 and is regarded as one of the most prestigious mathematics journals in the world. The current (2023) managing editors are Jean-Benoît Bost (University of Paris-Sud) and Wilhelm Schlag (Yale University Yale University is a Private university, private Ivy League research university in New Haven, Connecticut, United States. Founded in 1701, Yale is the List of Colonial Colleges, third-oldest institution of higher education in the United Stat ...). Abstracting and indexing The journal is abstracted and indexed in: References External links *{{Official website, https://www.springer.com/journal/222 Mathematics journals Academic journals established in 1966 English-language journals Springer Science+Business Media academic journals Monthly journals ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Publications Mathématiques De L'IHÉS
''Publications Mathématiques de l'IHÉS'' is a peer-reviewed mathematical journal. It is published by Springer Science+Business Media on behalf of the Institut des Hautes Études Scientifiques, with the help of the Centre National de la Recherche Scientifique. The journal was established in 1959 and was published at irregular intervals, from one to five volumes a year. It is now biannual. The editor-in-chief is Sébastien Boucksom (CNRS, Institut de Mathématique de Jussieu). See also *''Annals of Mathematics The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as t ...'' *'' Journal of the American Mathematical Society'' *'' Inventiones Mathematicae'' External links * Back issues from 1959 to 2010 Mathematics journals Academic journals established in 1959 Springer Science+Business Me ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lie Superalgebra
In mathematics, a Lie superalgebra is a generalisation of a Lie algebra to include a \Z/2\Z grading. Lie superalgebras are important in theoretical physics where they are used to describe the mathematics of supersymmetry. The notion of \Z/2\Z grading used here is distinct from a second \Z/2\Z grading having cohomological origins. A graded Lie algebra (say, graded by \Z or \N) that is anticommutative and has a graded Jacobi identity also has a \Z/2\Z grading; this is the "rolling up" of the algebra into odd and even parts. This rolling-up is not normally referred to as "super". Thus, supergraded Lie superalgebras carry a ''pair'' of \Z/2\Zgradations: one of which is supersymmetric, and the other is classical. Pierre Deligne calls the supersymmetric one the ''super gradation'', and the classical one the ''cohomological gradation''. These two gradations must be compatible, and there is often disagreement as to how they should be regarded. Definition Formally, a Lie superalgebra is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Macdonald Identities
In mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ..., the Macdonald identities are some infinite product identities associated to affine root systems, introduced by . They include as special cases the Jacobi triple product identity, Watson's quintuple product identity, several identities found by , and a 10-fold product identity found by . and pointed out that the Macdonald identities are the analogs of the Weyl denominator formula for affine Kac–Moody algebras and superalgebras. References * * * * * *{{Citation , last1=Winquist , first1=Lasse , title=An elementary proof of p(11m+6) ≡ 0 mod 11 , mr=0236136 , year=1969 , journal=Journal of Combinatorial Theory , volume=6 , pages=56–59 , doi=10.1016/s0021-9800(69)80105-5, doi-access=free Lie al ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dynkin Diagram
In the Mathematics, mathematical field of Lie theory, a Dynkin diagram, named for Eugene Dynkin, is a type of Graph (discrete mathematics), graph with some edges doubled or tripled (drawn as a double or triple line). Dynkin diagrams arise in the classification of semisimple Lie algebras over algebraically closed fields, in the classification of Weyl groups and other finite reflection groups, and in other contexts. Various properties of the Dynkin diagram (such as whether it contains multiple edges, or its symmetries) correspond to important features of the associated Lie algebra. The term "Dynkin diagram" can be ambiguous. In some cases, Dynkin diagrams are assumed to be directed graph, directed, in which case they correspond to root systems and semi-simple Lie algebras, while in other cases they are assumed to be undirected graph, undirected, in which case they correspond to Weyl groups. In this article, "Dynkin diagram" means ''directed'' Dynkin diagram, and ''undirected'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Root System
In mathematics, a root system is a configuration of vector space, vectors in a Euclidean space satisfying certain geometrical properties. The concept is fundamental in the theory of Lie groups and Lie algebras, especially the classification and representation theory of semisimple Lie algebras. Since Lie groups (and some analogues such as algebraic groups) and Lie algebras have become important in many parts of mathematics during the twentieth century, the apparently special nature of root systems belies the number of areas in which they are applied. Further, the classification scheme for root systems, by Dynkin diagrams, occurs in parts of mathematics with no overt connection to Lie theory (such as singularity theory). Finally, root systems are important for their own sake, as in spectral graph theory. Definitions and examples As a first example, consider the six vectors in 2-dimensional Euclidean space, R2, as shown in the image at the right; call them roots. These vectors Li ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kac–Moody Algebra
In mathematics, a Kac–Moody algebra (named for Victor Kac and Robert Moody, who independently and simultaneously discovered them in 1968) is a Lie algebra, usually infinite-dimensional, that can be defined by generators and relations through a generalized Cartan matrix. These algebras form a generalization of finite-dimensional semisimple Lie algebras, and many properties related to the structure of a Lie algebra such as its root system, irreducible representations, and connection to flag manifolds have natural analogues in the Kac–Moody setting. A class of Kac–Moody algebras called affine Lie algebras is of particular importance in mathematics and theoretical physics, especially two-dimensional conformal field theory and the theory of exactly solvable models. Kac discovered an elegant proof of certain combinatorial identities, the Macdonald identities, which is based on the representation theory of affine Kac–Moody algebras. Howard Garland and James Lepowsky demonstrated ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Macdonald Polynomials
In mathematics, Macdonald polynomials ''P''λ(''x''; ''t'',''q'') are a family of orthogonal symmetric polynomials in several variables, introduced by Macdonald in 1987. He later introduced a non-symmetric generalization in 1995. Macdonald originally associated his polynomials with weights λ of finite root systems and used just one variable ''t'', but later realized that it is more natural to associate them with affine root systems rather than finite root systems, in which case the variable ''t'' can be replaced by several different variables ''t''=(''t''1,...,''tk''), one for each of the ''k'' orbits of roots in the affine root system. The Macdonald polynomials are polynomials in ''n'' variables ''x''=(''x''1,...,''xn''), where ''n'' is the rank of the affine root system. They generalize many other families of orthogonal polynomials, such as Jack polynomials and Hall–Littlewood polynomials and Askey–Wilson polynomials, which in turn include most of the named orthogona ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |