Acyl-CoA
Acyl-CoA is a group of coenzyme A, CoA-based coenzymes that metabolize carboxylic acids. Fatty acyl-CoA's are susceptible to beta oxidation, forming, ultimately, acetyl-CoA. The acetyl-CoA enters the citric acid cycle, eventually forming several equivalents of Adenosine triphosphate, ATP. In this way, fats are converted to ATP, the common biochemical energy carrier. Functions Fatty acid activation Fats are broken down by conversion to acyl-CoA. This conversion is one response to high energy demands such as exercise. The oxidative degradation of fatty acids is a two-step process, catalyzed by Long-chain-fatty-acid—CoA ligase, acyl-CoA synthetase. Fatty acids are converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase" :acyl-P + HS-CoA → acyl-S-CoA + Pi + H+ Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. For example, the substrates for medium chain acyl-CoA synthas ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Beta Oxidation
In biochemistry and metabolism, beta oxidation (also β-oxidation) is the catabolic process by which fatty acid molecules are broken down in the cytosol in prokaryotes and in the mitochondria in eukaryotes to generate acetyl-CoA. Acetyl-CoA enters the citric acid cycle, generating NADH and FADH2, which are electron carriers used in the electron transport chain. It is named as such because the beta carbon of the fatty acid chain undergoes oxidation and is converted to a carbonyl group to start the cycle all over again. Beta-oxidation is primarily facilitated by the mitochondrial trifunctional protein, an enzyme complex associated with the inner mitochondrial membrane, although very long chain fatty acids are oxidized in peroxisomes. The overall reaction for one cycle of beta oxidation is: :C''n''-acyl-CoA + FAD + NAD''+'' + H''2''O + CoA → C''n''-2-acyl-CoA + FADH''2'' + NADH + H''+'' + acetyl-CoA Activation and membrane transport Free fatty acids cannot penetrate any bi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Long-chain-fatty-acid—CoA Ligase
The long chain fatty acyl-CoA ligase (or synthetase) is an enzyme () of the ligase family that activates the oxidation of complex fatty acids. Long chain fatty acyl-CoA synthetase catalyzes the formation of fatty acyl-CoA by a two-step process proceeding through an adenylation, adenylated intermediate. The enzyme catalyzes the following reaction, :Fatty acid + coenzyme A, CoA + adenosine triphosphate, ATP ⇌ Acyl-CoA + adenosine monophosphate, AMP + pyrophosphate, PPi It is present in all organisms from bacteria to humans. It catalyzes the pre-step reaction for β-oxidation of fatty acids or can be incorporated in phospholipids. Function Long chain fatty acyl-CoA synthetase, LC-FACS, plays a role in the physiological regulation of various cellular functions via the production of long chain fatty acyl-CoA esters, which reportedly have affected protein transport, enzyme activation, protein acylation, cell signaling, and transcriptional regulation. The formation of fatty acyl-Co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Acyl-CoA Dehydrogenase
Acyl-CoA dehydrogenases (ACADs) are a class of enzymes that function to catalyze the initial step in each cycle of fatty acid β-oxidation in the mitochondria of cells. Their action results in the introduction of a trans double-bond between C2 (α) and C3 (β) of the acyl-CoA thioester substrate. Flavin adenine dinucleotide (FAD) is a required co-factor in addition to the presence of an active site glutamate in order for the enzyme to function. The following reaction is the oxidation of the fatty acid by FAD to afford an α,β-unsaturated fatty acid thioester of coenzyme A: ACADs can be categorized into three distinct groups based on their specificity for short-, medium-, or long-chain fatty acid acyl-CoA substrates. While different dehydrogenases target fatty acids of varying chain length, all types of ACADs are mechanistically similar. Differences in the enzyme occur based on the location of the active site along the amino acid sequence. ACADs are an important class of enzy ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Acyl CoA Dehydrogenase
Acyl-CoA dehydrogenases (ACADs) are a class of enzymes that function to catalyze the initial step in each cycle of fatty acid β-oxidation in the mitochondria of cells. Their action results in the introduction of a trans double-bond between C2 (α) and C3 (β) of the acyl-CoA thioester substrate. Flavin adenine dinucleotide (FAD) is a required co-factor in addition to the presence of an active site glutamate in order for the enzyme to function. The following reaction is the oxidation of the fatty acid by FAD to afford an α,β-unsaturated fatty acid thioester of coenzyme A: ACADs can be categorized into three distinct groups based on their specificity for short-, medium-, or long-chain fatty acid acyl-CoA substrates. While different dehydrogenases target fatty acids of varying chain length, all types of ACADs are mechanistically similar. Differences in the enzyme occur based on the location of the active site along the amino acid sequence. ACADs are an important class of en ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Acyl-CoA2
Acyl-CoA is a group of CoA-based coenzymes that metabolize carboxylic acids. Fatty acyl-CoA's are susceptible to beta oxidation, forming, ultimately, acetyl-CoA. The acetyl-CoA enters the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP, the common biochemical energy carrier. Functions Fatty acid activation Fats are broken down by conversion to acyl-CoA. This conversion is one response to high energy demands such as exercise. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase. Fatty acids are converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase" :acyl-P + HS-CoA → acyl-S-CoA + Pi + H+ Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. For example, the substrates for medium chain acyl-CoA synthase are 4-11 carbon fatty acids. The enzyme acyl-CoA thioesterase takes ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fatty Acid Metabolism
Fatty acid metabolism consists of various metabolic processes involving or closely related to fatty acids, a family of molecules classified within the lipid macronutrient category. These processes can mainly be divided into (1) catabolic processes that generate energy and (2) anabolic processes where they serve as building blocks for other compounds. In catabolism, fatty acids are metabolized to produce energy, mainly in the form of adenosine triphosphate (ATP). When compared to other macronutrient classes (carbohydrates and protein), fatty acids yield the most ATP on an energy per gram basis, when they are completely oxidized to CO2 and water by beta oxidation and the citric acid cycle. Fatty acids (mainly in the form of triglycerides) are therefore the foremost storage form of fuel in most animals, and to a lesser extent in plants. In anabolism, intact fatty acids are important precursors to triglycerides, phospholipids, second messengers, hormones and ketone bodies. For exa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
3-hydroxyacyl-CoA Dehydrogenase
In enzymology, a 3-hydroxyacyl-CoA dehydrogenase () is an enzyme that catalyzes the chemical reaction :(S)-3-hydroxyacyl-CoA + NAD+ \rightleftharpoons 3-oxoacyl-CoA + NADH + H+ Thus, the two substrates of this enzyme are (S)-3-hydroxyacyl-CoA and NAD+, whereas its 3 products are 3-oxoacyl-CoA, NADH, and H+. This enzyme belongs to the family of oxidoreductases, to be specific those acting on the CH-OH group of donor with NAD+ or NADP+ as acceptor. Isozymes In humans, the following genes encode proteins with 3-hydroxyacyl-CoA dehydrogenase activity: * HADH – Hydroxyacyl-Coenzyme A dehydrogenase * HSD17B10 – 3-Hydroxyacyl-CoA dehydrogenase type-2 * EHHADH – Peroxisomal bifunctional enzyme * HSD17B4 – Peroxisomal multifunctional enzyme type 2 Function 3-Hydroxyacyl CoA dehydrogenase is classified as an oxidoreductase. It is involved in fatty acid metabolic processes. Specifically it catalyzes the third step of beta oxidation; the oxidation of L-3-hydroxyacyl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fatty Acyl-CoA Esters
Fatty acyl-CoA esters are fatty acid derivatives formed of one fatty acid, a 3'-phospho-Adenosine monophosphate, AMP linked to phosphorylated pantothenic acid (vitamin B5) and cysteamine. Long-chain acyl-CoA esters are substrates for a number of important enzymatic reactions and play a central role in the regulation of metabolism as allosteric regulators of several enzymes. To participate in specific metabolic processes, fatty acids must first be activated by being joined in thioester linkage (R-CO-SCoA) to the -SH group of coenzyme A, where R is a fatty carbon chain. The thioester bond is a high energy bond. The activation reaction normally occurs in the endoplasmic reticulum or the outer mitochondrial membrane. This is an adenosine triphosphate (ATP)-requiring reaction with Fatty-acyl-CoA synthase, fatty acyl-CoA synthase (CoASH), yielding adenosine monophosphate (AMP) and pyrophosphate (PPi): R-COOH + CoASH + ATP \rightleftharpoons R-CO-SCoA + AMP + PPi Different enzymes a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fatty Acyl-CoA
Fatty acyl-CoA esters are fatty acid derivatives formed of one fatty acid, a 3'-phospho- AMP linked to phosphorylated pantothenic acid (vitamin B5) and cysteamine. Long-chain acyl-CoA esters are substrates for a number of important enzymatic reactions and play a central role in the regulation of metabolism as allosteric regulators of several enzymes. To participate in specific metabolic processes, fatty acids must first be activated by being joined in thioester linkage (R-CO-SCoA) to the -SH group of coenzyme A, where R is a fatty carbon chain. The thioester bond is a high energy bond. The activation reaction normally occurs in the endoplasmic reticulum or the outer mitochondrial membrane. This is an adenosine triphosphate (ATP)-requiring reaction with fatty acyl-CoA synthase (CoASH), yielding adenosine monophosphate (AMP) and pyrophosphate (PPi): R-COOH + CoASH + ATP \rightleftharpoons R-CO-SCoA + AMP + PPi Different enzymes are specific for fatty acids of different cha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Acetyl-CoA
Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidation, oxidized for energy production. Coenzyme A (CoASH or CoA) consists of a cysteamine, β-mercaptoethylamine group linked to pantothenic acid (vitamin B5) through an amide linkage and 3'-phosphorylated ADP. The acetyl group (indicated in blue in the structural diagram on the right) of acetyl-CoA is linked to the sulfhydryl substituent of the β-mercaptoethylamine group. This thioester linkage is a "high energy" bond, which is particularly reactive. Hydrolysis of the thioester bond is exergonic (−31.5 kJ/mol). CoA is acetylated to acetyl-CoA by the breakdown of carbohydrates through glycolysis and by the breakdown of fatty acids through Beta oxidation, β-oxidation. Acetyl-CoA then enters the citric acid cycle, where the acetyl group is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |