HOME



picture info

742 Symmetry
In geometry, the truncated tetraheptagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of tr. Images Poincaré disk projection, centered on 14-gon: : Symmetry The dual to this tiling represents the fundamental domains of ,4(*742) symmetry. There are three small index subgroups constructed from ,4by mirror removal and alternation. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors. Related polyhedra and tiling References * John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, ''The Symmetries of Things'' 2008, (Chapter 19, The Hyperbolic Archimedean Tessellations) * See also *Uniform tilings in hyperbolic plane *List of regular polytopes This article lists the regular polytopes in Euclidean, spherical and hyperbolic spaces. Overview This table shows a summary of regular polytope counts by rank. There are no Euclidean regular star tessellations in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a ''List of geometers, geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point (geometry), point, line (geometry), line, plane (geometry), plane, distance, angle, surface (mathematics), surface, and curve, as fundamental concepts. Originally developed to model the physical world, geometry has applications in almost all sciences, and also in art, architecture, and other activities that are related to graphics. Geometry also has applications in areas of mathematics that are apparently unrelated. For example, methods of algebraic geometry are fundamental in Wiles's proof of Fermat's Last Theorem, Wiles's proof of Fermat's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

772 Symmetry
In geometry, the truncated order-4 heptagonal tiling is a uniform tiling of the Hyperbolic geometry, hyperbolic plane. It has Schläfli symbol of t. Constructions There are two uniform constructions of this tiling, first by the [7,4] kaleidoscope, and second by removing the last mirror, [7,4,1+], gives [7,7], (*772). Symmetry There is only one simple subgroup [7,7]+, index 2, removing all the mirrors. This symmetry can be doubled to 742 symmetry by adding a bisecting mirror. Related polyhedra and tiling References * John Horton Conway, John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, ''The Symmetries of Things'' 2008, (Chapter 19, The Hyperbolic Archimedean Tessellations) * See also *Uniform tilings in hyperbolic plane *List of regular polytopes External links * * Hyperbolic and Spherical Tiling Gallery
* [http://www.plunk.org/~hatch/HyperbolicTesselations Hyperbolic Planar Tessellations, Don Hatch] Heptagonal tilings Hyperbolic tilings Isogonal tili ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Isogonal Tilings
Isogonal, a mathematical term meaning "having similar angles", may refer to: *Isogonal figure or polygon, polyhedron, polytope or tiling * Isogonal trajectory, in curve theory *Isogonal conjugate __NOTOC__ In geometry, the isogonal conjugate of a point with respect to a triangle is constructed by reflecting the lines about the angle bisectors of respectively. These three reflected lines concur at the isogonal conjugate of . (Th ..., in triangle geometry See also * Isogonic line, in the study of Earth's magnetic field, a line of constant magnetic declination {{disambig Geometry ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperbolic Tilings
In hyperbolic geometry, a uniform hyperbolic tiling (or regular, quasiregular or semiregular hyperbolic tiling) is an edge-to-edge filling of the hyperbolic plane which has regular polygons as Face (geometry), faces and is vertex-transitive (Transitive group action, transitive on its vertex (geometry), vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are Congruence (geometry), congruent, and the tessellation, tiling has a high degree of rotational and translational symmetry. Uniform tilings can be identified by their vertex configuration, a sequence of numbers representing the number of sides of the polygons around each vertex. For example, 7.7.7 represents the heptagonal tiling which has 3 heptagons around each vertex. It is also regular since all the polygons are the same size, so it can also be given the Schläfli symbol . Uniform tilings may be Regular polyhedron, regular (if also face- and edge-transitive), quasi- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

List Of Regular Polytopes
This article lists the regular polytopes in Euclidean, spherical and hyperbolic spaces. Overview This table shows a summary of regular polytope counts by rank. There are no Euclidean regular star tessellations in any number of dimensions. 1-polytopes There is only one polytope of rank 1 (1-polytope), the closed line segment bounded by its two endpoints. Every realization of this 1-polytope is regular. It has the Schläfli symbol , or a Coxeter diagram with a single ringed node, . Norman Johnson calls it a ''dion'' and gives it the Schläfli symbol . Although trivial as a polytope, it appears as the edges of polygons and other higher dimensional polytopes. It is used in the definition of uniform prisms like Schläfli symbol ×, or Coxeter diagram as a Cartesian product of a line segment and a regular polygon. 2-polytopes (polygons) The polytopes of rank 2 (2-polytopes) are called polygons. Regular polygons are equilateral and cyclic. A -gonal regular polygon is repre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Uniform Tilings In Hyperbolic Plane
In hyperbolic geometry, a uniform hyperbolic tiling (or regular, quasiregular or semiregular hyperbolic tiling) is an edge-to-edge filling of the hyperbolic plane which has regular polygons as Face (geometry), faces and is vertex-transitive (Transitive group action, transitive on its vertex (geometry), vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are Congruence (geometry), congruent, and the tessellation, tiling has a high degree of rotational and translational symmetry. Uniform tilings can be identified by their vertex configuration, a sequence of numbers representing the number of sides of the polygons around each vertex. For example, 7.7.7 represents the heptagonal tiling which has 3 heptagons around each vertex. It is also regular since all the polygons are the same size, so it can also be given the Schläfli symbol . Uniform tilings may be Regular polyhedron, regular (if also face- and edge-transitive), quasi- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

John Horton Conway
John Horton Conway (26 December 1937 – 11 April 2020) was an English mathematician. He was active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He also made contributions to many branches of recreational mathematics, most notably the invention of the cellular automaton called the Game of Life. Born and raised in Liverpool, Conway spent the first half of his career at the University of Cambridge before moving to the United States, where he held the John von Neumann Professorship at Princeton University for the rest of his career. On 11 April 2020, at age 82, he died of complications from COVID-19. Early life and education Conway was born on 26 December 1937 in Liverpool, the son of Cyril Horton Conway and Agnes Boyce. He became interested in mathematics at a very early age. By the time he was 11, his ambition was to become a mathematician. After leaving sixth form, he studied mathematics at Gonville and Caius Coll ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


742 Symmetry Zza
74 may refer to: * 74 (number) * one of the years 74 BC, AD 74, 1974, 2074 * The 74, an American nonprofit news website * Seventy-four (ship), a type of two-decked sailing ship * 74 Galatea, a main-belt asteroid See also * List of highways numbered All lists of highways beginning with a number. {{List of highways numbered index Lists of transport lists ...
* {{Numberdis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orbifold Notation
In geometry, orbifold notation (or orbifold signature) is a system, invented by the mathematician William Thurston and promoted by John Horton Conway, John Conway, for representing types of symmetry groups in two-dimensional spaces of constant curvature. The advantage of the notation is that it describes these groups in a way which indicates many of the groups' properties: in particular, it follows William Thurston in describing the orbifold obtained by taking the quotient of Euclidean space by the group under consideration. Groups representable in this notation include the point groups in three dimensions, point groups on the sphere (S^2), the frieze groups and wallpaper groups of the Euclidean plane (E^2), and their analogues on the hyperbolic geometry, hyperbolic plane (H^2). Definition of the notation The following types of Euclidean transformation can occur in a group described by orbifold notation: * reflection through a line (or plane) * translation by a vector * rotati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperbolic Geometry
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or János Bolyai, Bolyai–Nikolai Lobachevsky, Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P'' not on ''R'', in the plane containing both line ''R'' and point ''P'' there are at least two distinct lines through ''P'' that do not intersect ''R''. (Compare the above with Playfair's axiom, the modern version of Euclid's parallel postulate.) The hyperbolic plane is a plane (mathematics), plane where every point is a saddle point. Hyperbolic plane geometry is also the geometry of pseudosphere, pseudospherical surfaces, surfaces with a constant negative Gaussian curvature. Saddle surfaces have negative Gaussian curvature in at least some regions, where they local property, locally resemble the hyperbolic plane. The hyperboloid model of hyperbolic geometry provides a representation of event (relativity ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]