HOME





6344 P-L
6344 P-L is an unnumbered, sub-kilometer asteroid and suspected dormant comet, classified as near-Earth object and potentially hazardous asteroid of the Apollo group that was first observed on 24 September 1960, by astronomers and asteroid searchers Tom Gehrels, Ingrid van Houten-Groeneveld, and Cornelis Johannes van Houten during the Palomar–Leiden survey at Palomar Observatory. Description Since is still unnumbered, the discoverers have not yet been officially determined. Last seen in 1960, it was lost, but rediscovered in 2007 as . In other words, it was a lost asteroid from 1960 until it was recovered and recognized as the same object by Peter Jenniskens in 2007. It was again observed from 19 July 2021 to 4 August 2021 by Astronomical Research Observatory, Westfield, and Calar Alto-Schmidt (see Minor Planet Center MPS 1525704). It is either an asteroid or dormant comet nucleus, and it has a 4.7-year orbit around the Sun. The orbit goes out as far as Jupiter's but ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cornelis Johannes Van Houten
Cornelis Johannes van Houten (18 February 1920 – 24 August 2002) was a Dutch astronomer, sometimes referred to as Kees van Houten. Early life and education Born in The Hague, he spent his entire career at Leiden University except for a brief period (1954–1956) as research assistant at Yerkes Observatory. Family He married fellow astronomer Ingrid Groeneveld (who became Ingrid van Houten-Groeneveld) and together they became interested in asteroids. They had one son, Karel. Work as astronomer In a jointly credited trio with Tom Gehrels and Ingrid, he was an extremely prolific discoverer of many thousands of asteroids. Gehrels did a sky survey using the 48-inch Schmidt telescope at Palomar Observatory and shipped the plates to the van Houtens at Leiden Observatory, who analyzed them for new asteroids. The trio are jointly credited with several thousand discoveries. When the orbit of an asteroid is determined, it can be classified as an Apollo asteroid (e.g. 1862 Apollo), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Potentially Hazardous Asteroid
A potentially hazardous object (PHO) is a near-Earth object – either an asteroid or a comet – with an orbit that can make close approaches to the Earth and is large enough to cause significant regional damage in the event of impact. They are defined as having a minimum orbit intersection distance with Earth of less than and an absolute magnitude of 22 or brighter. More than 99% of the known potentially hazardous objects are not an impact threat over the next 100 years. , only 17 potentially hazardous objects are listed on the Sentry Risk Table as objects that are known not to be a threat over the next hundred years are excluded. Over hundreds if not thousands of years, "potentially hazardous" asteroids have the potential for their orbits to evolve to live up to their namesake. Most of these objects are potentially hazardous asteroids (PHAs), and a few are comets. there are 2,304 known PHAs (about 8% of the total near-Earth population), of which 153 are estimated to be lar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minor Planet
According to the International Astronomical Union (IAU), a minor planet is an astronomical object in direct orbit around the Sun that is exclusively classified as neither a planet nor a comet. Before 2006, the IAU officially used the term ''minor planet'', but that year's meeting reclassified minor planets and comets into dwarf planets and small Solar System bodies (SSSBs).Press release, IAU 2006 General Assembly: Result of the IAU Resolution votes
International Astronomical Union, August 24, 2006. Accessed May 5, 2008.
Minor planets include s ( ne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Astrometry
Astrometry is a branch of astronomy that involves precise measurements of the positions and movements of stars and other celestial bodies. It provides the kinematics and physical origin of the Solar System and this galaxy, the Milky Way. History The history of astrometry is linked to the history of star catalogues, which gave astronomers reference points for objects in the sky so they could track their movements. This can be dated back to Hipparchus, who around 190 BC used the catalogue of his predecessors Timocharis and Aristillus to discover Earth's precession. In doing so, he also developed the brightness scale still in use today. Hipparchus compiled a catalogue with at least 850 stars and their positions. Hipparchus's successor, Ptolemy, included a catalogue of 1,022 stars in his work the ''Almagest'', giving their location, coordinates, and brightness. In the 10th century, Abd al-Rahman al-Sufi carried out observations on the stars and described their positions, magn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Samuel Oschin Telescope
The Samuel Oschin telescope, also called the Oschin Schmidt, is a Schmidt camera at the Palomar Observatory in northern San Diego County, California. It consists of a 49.75-inch Schmidt corrector plate and a 72-inch (f/2.5) mirror. The instrument is strictly a camera; there is no provision for an eyepiece to look through it. It originally used 10- and 14-inch glass photographic plates. Since the focal plane is curved, these plates had to be preformed in a special jig before being loaded into the camera. Construction on the Schmidt telescope began in 1939 and it was completed in 1948. It was named the Samuel Oschin telescope in 1986. Before that it was just called the 48-inch Schmidt. In the mid-1980s, the corrector plate was replaced using glass with less chromatic aberration, producing higher quality images over a broader spectrum. Between 2000 and 2001, it was converted to use a CCD imager. The corrector plate was recently replaced using glass that is transparent to a wider ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Leiden Observatory
Leiden Observatory ( nl, Sterrewacht Leiden) is an astronomical institute of Leiden University, in the Netherlands. Established in 1633 to house the quadrant of Rudolph Snellius, it is the oldest operating university observatory in the world, with the only older still existing observatory being the Vatican Observatory. The observatory was initially located on the university building in the centre of Leiden before a new observatory building and dome were constructed in the university's botanical garden in 1860. It remained there until 1974 when the department moved to the science campus north-west of the city. Notable astronomers that have worked or directed the observatory include Willem de Sitter, Ejnar Hertzsprung and Jan Oort. History 1633–1860 Leiden University established the observatory in 1633; astronomy had been on the curriculum for a long time, and due to possession of a large Quadrant (instrument), quadrant built by Rudolph Snellius, Jacobus Golius requested an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Survey Designation
Provisional designation in astronomy is the naming convention applied to astronomical objects immediately following their discovery. The provisional designation is usually superseded by a permanent designation once a reliable orbit has been calculated. Approximately 47% of the more than 1,100,000 known minor planets remain provisionally designated, as hundreds of thousands have been discovered in the last two decades. __TOC__ Minor planets The current system of provisional designation of minor planets (asteroids, centaurs and trans-Neptunian objects) has been in place since 1925. It superseded several previous conventions, each of which was in turn rendered obsolete by the increasing numbers of minor planet discoveries. A modern or new-style provisional designation consists of the year of discovery, followed by two letters and, possibly, a suffixed number. New-style provisional designation For example, the provisional designation stands for the 3910th body identified dur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poles Of Astronomical Bodies
The poles of astronomical bodies are determined based on their axis of rotation in relation to the celestial poles of the celestial sphere. Astronomical bodies include stars, planets, dwarf planets and small Solar System bodies such as comets and minor planets (e.g., asteroids), as well as natural satellites and minor-planet moons. Poles of rotation The International Astronomical Union (IAU) defines the north pole of a planet or any of its satellites in the Solar System as the planetary pole that is in the same celestial hemisphere, relative to the invariable plane of the Solar System, as Earth's north pole. This definition is independent of the object's direction of rotation about its axis. This implies that an object's direction of rotation, when viewed from above its north pole, may be either clockwise or counterclockwise. The direction of rotation exhibited by most objects in the solar system (including Sun and Earth) is counterclockwise. Venus rotates clockwise, and Ura ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rotation Period
The rotation period of a celestial object (e.g., star, gas giant, planet, moon, asteroid) may refer to its sidereal rotation period, i.e. the time that the object takes to complete a single revolution around its axis of rotation relative to the background stars, measured in sidereal time. The other type of commonly used rotation period is the object's synodic rotation period (or ''solar day''), measured in solar time, which may differ by a fraction of a rotation or more than one rotation to accommodate the portion of the object's orbital period during one day. Measuring rotation For solid objects, such as rocky planets and asteroids, the rotation period is a single value. For gaseous or fluid bodies, such as stars and gas giants, the period of rotation varies from the object's equator to its Poles of astronomical bodies, pole due to a phenomenon called differential rotation. Typically, the stated rotation period for a gas giant (such as Jupiter, Saturn, Uranus, Neptune) is its in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lightcurve
In astronomy, a light curve is a graph of light intensity of a celestial object or region as a function of time, typically with the magnitude of light received on the y axis and with time on the x axis. The light is usually in a particular frequency interval or band. Light curves can be periodic, as in the case of eclipsing binaries, Cepheid variables, other periodic variables, and transiting extrasolar planets, or aperiodic, like the light curve of a nova, a cataclysmic variable star, a supernova or a microlensing event or binary as observed during occultation events. The study of the light curve, together with other observations, can yield considerable information about the physical process that produces it or constrain the physical theories about it. Variable stars Graphs of the apparent magnitude of a variable star over time are commonly used to visualise and analyse their behaviour. Although the categorisation of variable star types is increasingly done from t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Astronomical Albedo
Albedo (; ) is the measure of the diffuse reflection of sunlight, solar radiation out of the total solar radiation and measured on a scale from 0, corresponding to a black body that absorbs all incident radiation, to 1, corresponding to a body that reflects all incident radiation. Surface albedo is defined as the ratio of Radiosity (radiometry), radiosity ''J''e to the irradiance ''E''e (flux per unit area) received by a surface. The proportion reflected is not only determined by properties of the surface itself, but also by the spectral and angular distribution of solar radiation reaching the Earth's surface. These factors vary with atmospheric composition, geographic location, and time (see position of the Sun). While bi-hemispherical reflectance is calculated for a single angle of incidence (i.e., for a given position of the Sun), albedo is the directional integration of reflectance over all solar angles in a given period. The temporal resolution may range from seconds (as ob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minimum Orbit Intersection Distance
Minimum orbit intersection distance (MOID) is a measure used in astronomy to assess potential close approaches and collision risks between astronomical objects. It is defined as the distance between the closest points of the osculating orbits of two bodies. Of greatest interest is the risk of a collision with Earth. Earth MOID is often listed on comet and asteroid databases such as the JPL Small-Body Database. MOID values are also defined with respect to other bodies as well: Jupiter MOID, Venus MOID and so on. An object is classified as a potentially hazardous object (PHO) – that is, posing a possible risk to Earth – if, among other conditions, its Earth MOID is less than 0.05 AU. For more massive bodies than Earth, there is a potentially notable close approach with a larger MOID; for instance, Jupiter MOIDs less than 1 AU are considered noteworthy since Jupiter is the most massive planet.Bruce Koehn,Minimum Orbital Intersection Distance, Lowell Observatory, retrieved o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]