HOME





4354 Euclides
4354 Euclides , provisional designation , is a dark Dorian asteroid from the central regions of the asteroid belt, approximately in diameter. It was discovered on 24 September 1960, by Dutch astronomer couple Ingrid and Cornelis van Houten on photographic plates taken by Dutch–American astronomer Tom Gehrels at Palomar Observatory in California. The likely C-type asteroid was named after the Greek mathematician Euclid. Orbit and classification ''Euclides'' is a core member of the Dora family (), a well-established central asteroid family of more than 1,200 carbonaceous asteroids. The family's namesake is 668 Dora. It is alternatively known as the "Zhongolovich family", named after its presumably largest member 1734 Zhongolovich. The Dora family may also contain a subfamily. It orbits the Sun in the central asteroid belt at a distance of 2.2–3.4  AU once every 4 years and 8 months (1,707 days; semi-major axis of 2.8 AU). Its orbit has an eccentricity ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cornelis Johannes Van Houten
Cornelis Johannes van Houten (18 February 1920 – 24 August 2002) was a Dutch astronomer, sometimes referred to as Kees van Houten. Early life and education Born in The Hague, he spent his entire career at Leiden University except for a brief period (1954–1956) as research assistant at Yerkes Observatory. Family He married fellow astronomer Ingrid Groeneveld (who became Ingrid van Houten-Groeneveld) and together they became interested in asteroids. They had one son, Karel. Work as astronomer In a jointly credited trio with Tom Gehrels and Ingrid, he was an extremely prolific discoverer of many thousands of asteroids. Gehrels did a sky survey using the 48-inch Schmidt telescope at Palomar Observatory and shipped the plates to the van Houtens at Leiden Observatory, who analyzed them for new asteroids. The trio are jointly credited with several thousand discoveries. When the orbit of an asteroid is determined, it can be classified as an Apollo asteroid (e.g. 1862 Apollo), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Asteroid Family
An asteroid family is a population of asteroids that share similar proper orbital elements, such as semimajor axis, eccentricity, and orbital inclination. The members of the families are thought to be fragments of past asteroid collisions. An asteroid family is a more specific term than asteroid group whose members, while sharing some broad orbital characteristics, may be otherwise unrelated to each other. General properties Large prominent families contain several hundred recognized asteroids (and many more smaller objects which may be either not-yet-analyzed, or not-yet-discovered). Small, compact families may have only about ten identified members. About 33% to 35% of asteroids in the main belt are family members. There are about 20 to 30 reliably recognized families, with several tens of less certain groupings. Most asteroid families are found in the main asteroid belt, although several family-like groups such as the Pallas family, Hungaria family, and the Phocaea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Photographic Plate
Photographic plates preceded photographic film as a capture medium in photography, and were still used in some communities up until the late 20th century. The light-sensitive emulsion of silver salts was coated on a glass plate, typically thinner than common window glass. History Glass plates were far superior to film for research-quality imaging because they were stable and less likely to bend or distort, especially in large-format frames for wide-field imaging. Early plates used the wet collodion process. The wet plate process was replaced late in the 19th century by gelatin dry plates. A view camera nicknamed "The Mammoth" weighing was built by George R. Lawrence in 1899, specifically to photograph "The Alton Limited" train owned by the Chicago & Alton Railway. It took photographs on glass plates measuring × . Glass plate photographic material largely faded from the consumer market in the early years of the 20th century, as more convenient and less fragile fi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Samuel Oschin Telescope
The Samuel Oschin telescope, also called the Oschin Schmidt, is a Schmidt camera at the Palomar Observatory in northern San Diego County, California. It consists of a 49.75-inch Schmidt corrector plate and a 72-inch (f/2.5) mirror. The instrument is strictly a camera; there is no provision for an eyepiece to look through it. It originally used 10- and 14-inch glass photographic plates. Since the focal plane is curved, these plates had to be preformed in a special jig before being loaded into the camera. Construction on the Schmidt telescope began in 1939 and it was completed in 1948. It was named the Samuel Oschin telescope in 1986. Before that it was just called the 48-inch Schmidt. In the mid-1980s, the corrector plate was replaced using glass with less chromatic aberration, producing higher quality images over a broader spectrum. Between 2000 and 2001, it was converted to use a CCD imager. The corrector plate was recently replaced using glass that is transparent to a wider ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Palomar–Leiden Survey
The Palomar–Leiden survey (PLS) was a successful astronomical survey to study faint minor planets in a collaboration between the U.S Palomar Observatory and the Dutch Leiden Observatory, and resulted in the discovery of thousands of asteroids, including many Jupiter trojans. The original PLS-survey took place in 1960, and was followed by three Palomar–Leiden Trojan survey campaigns, launched in 1971, 1973 and 1977. Its principal investigators were the astronomers Ingrid and Cornelis van Houten at Leiden and Tom Gehrels at Palomar. For the period of the entire survey (1960–1977), the trio of astronomers are credited with the discovery of 4,637 numbered minor planets, which received their own provisional designation, such as 6344 P-L, 4835 T-1 and 3181 T-2. PLS was one of the most productive minor planet surveys ever conducted: five new asteroid families were discovered, gaps at 1:3 and 2:5 orbital resonances with Jupiter were revealed, and hundreds of photographic plates ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Leiden Observatory
Leiden Observatory ( nl, Sterrewacht Leiden) is an astronomical institute of Leiden University, in the Netherlands. Established in 1633 to house the quadrant of Rudolph Snellius, it is the oldest operating university observatory in the world, with the only older still existing observatory being the Vatican Observatory. The observatory was initially located on the university building in the centre of Leiden before a new observatory building and dome were constructed in the university's botanical garden in 1860. It remained there until 1974 when the department moved to the science campus north-west of the city. Notable astronomers that have worked or directed the observatory include Willem de Sitter, Ejnar Hertzsprung and Jan Oort. History 1633–1860 Leiden University established the observatory in 1633; astronomy had been on the curriculum for a long time, and due to possession of a large Quadrant (instrument), quadrant built by Rudolph Snellius, Jacobus Golius requested an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Survey Designation
Provisional designation in astronomy is the naming convention applied to astronomical objects immediately following their discovery. The provisional designation is usually superseded by a permanent designation once a reliable orbit has been calculated. Approximately 47% of the more than 1,100,000 known minor planets remain provisionally designated, as hundreds of thousands have been discovered in the last two decades. __TOC__ Minor planets The current system of provisional designation of minor planets (asteroids, centaurs and trans-Neptunian objects) has been in place since 1925. It superseded several previous conventions, each of which was in turn rendered obsolete by the increasing numbers of minor planet discoveries. A modern or new-style provisional designation consists of the year of discovery, followed by two letters and, possibly, a suffixed number. New-style provisional designation For example, the provisional designation stands for the 3910th body identified dur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Precovery
In astronomy, precovery (short for pre-discovery recovery) is the process of finding the image of an object in images or photographic plates predating its discovery, typically for the purpose of calculating a more accurate orbit. This happens most often with minor planets, but sometimes a comet, a dwarf planet, a natural satellite, or a star is found in old archived images; even exoplanet precovery observations have been obtained. "Precovery" refers to a pre-discovery image; "recovery" refers to imaging of a body which was lost to our view (as behind the Sun), but is now visible again ''(also see lost minor planet and lost comet)''. Orbit determination requires measuring an object's position on multiple occasions. The longer the interval between observations, the more accurately the orbit can be calculated; however, for a newly discovered object, only a few days' or weeks' worth of measured positions may be available, sufficient only for a preliminary (imprecise) orbit calcul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Observation Arc
In observational astronomy, the observation arc (or arc length) of a Solar System body is the time period between its earliest and latest observations, used for tracing the body's path. It is usually given in days or years. The term is mostly used in the discovery and tracking of asteroids and comets. Arc length has the greatest influence on the accuracy of an orbit. The number and spacing of intermediate observations has a lesser effect. Short arcs A very short arc leaves a high uncertainty parameter. The object might be in one of many different orbits, at many distances from Earth. In some cases, the initial arc was too short to determine if the object was in orbit around the Earth, or orbiting out in the asteroid belt. With a 1-day observation arc, was thought to be a trans-Neptunian dwarf planet, but is now known to be a 1 km main-belt asteroid. With an observation arc of 3 days, was thought to be a Mars-crossing asteroid that could be a threat to Earth, but was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ecliptic
The ecliptic or ecliptic plane is the orbital plane of the Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic against the background of stars. The ecliptic is an important reference plane and is the basis of the ecliptic coordinate system. Sun's apparent motion The ecliptic is the apparent path of the Sun throughout the course of a year. Because Earth takes one year to orbit the Sun, the apparent position of the Sun takes one year to make a complete circuit of the ecliptic. With slightly more than 365 days in one year, the Sun moves a little less than 1° eastward every day. This small difference in the Sun's position against the stars causes any particular spot on Earth's surface to catch up with (and stand directly north or south of) the Sun about four minutes later each day than it would if Earth did not orbit; a day on Earth is therefore 24 ho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orbital Inclination
Orbital inclination measures the tilt of an object's orbit around a celestial body. It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Earth directly above the Equator, the plane of the satellite's orbit is the same as the Earth's equatorial plane, and the satellite's orbital inclination is 0°. The general case for a circular orbit is that it is tilted, spending half an orbit over the northern hemisphere and half over the southern. If the orbit swung between 20° north latitude and 20° south latitude, then its orbital inclination would be 20°. Orbits The inclination is one of the six orbital elements describing the shape and orientation of a celestial orbit. It is the angle between the orbital plane and the plane of reference, normally stated in degrees. For a satellite orbiting a planet, the plane of reference is usually the plane containing the planet's equator. For ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orbital Eccentricity
In astrodynamics, the orbital eccentricity of an astronomical object is a dimensionless parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit (or capture orbit), and greater than 1 is a hyperbola. The term derives its name from the parameters of conic sections, as every Kepler orbit is a conic section. It is normally used for the isolated two-body problem, but extensions exist for objects following a rosette orbit through the Galaxy. Definition In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit. The eccentricity of this Kepler orbit is a non-negative number that defines its shape. The eccentricity may take the following values: * circular orbit: ''e'' = 0 * elliptic orbit: 0 < ''e'' < 1 *