HOME



picture info

30S
The prokaryotic small ribosomal subunit, or 30Svedberg, S subunit, is the smaller subunit of the 70S ribosome found in prokaryotes. It is a complex of the 16S ribosomal RNA (rRNA) and 19 proteins. This complex is implicated in the binding of transfer RNA to messenger RNA (mRNA). The small subunit is responsible for the binding and the reading of the mRNA during translation (biology), translation. The small subunit, both the rRNA and its proteins, complexes with the large 50S subunit to form the 70S prokaryotic ribosome in prokaryotic cells. This 70S ribosome is then used to translate mRNA into proteins. Function The 30S subunit is an integral part of mRNA translation. It binds three prokaryotic initiation factors: IF-1, IF-2, and IF-3. A portion of the 30S subunit (the 16S ribosomal RNA, 16S rRNA) guides the initiating start codon (5′)-AUG-(3′) of mRNA into position by recognizing the Shine-Dalgarno sequence, a Complementarity (molecular biology), complementary binding s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Prokaryotic Initiation Factor
A bacterial initiation factor (IF) is a protein that stabilizes the initiation complex for polypeptide Translation (biology), translation. Translation initiation is essential to protein synthesis and regulates Messenger RNA, mRNA translation fidelity and efficiency in bacteria. The Prokaryotic small ribosomal subunit, 30S ribosomal subunit, initiator Transfer RNA, tRNA, and mRNA form an initiation complex for elongation. This complex process requires three essential protein factors in bacteria – IF1, IF2, and IF3. These factors bind to the 30S subunit and promote correct initiation codon selection on the mRNA. IF1, the smallest factor at 8.2 kDa, blocks elongator tRNA binding at the A-site. IF2 is the major component that transports initiator tRNA to the P-site. IF3 checks P-site codon-anticodon pairing and rejects incorrect initiation complexes. The orderly mechanism of initiation starts with IF3 attaching to the 30S subunit and changing its shape. IF1 joins next, followed by mR ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ribosome
Ribosomes () are molecular machine, macromolecular machines, found within all cell (biology), cells, that perform Translation (biology), biological protein synthesis (messenger RNA translation). Ribosomes link amino acids together in the order specified by the codons of messenger RNA molecules to form polypeptide chains. Ribosomes consist of two major components: the small and large ribosomal subunits. Each subunit consists of one or more ribosomal RNA molecules and many ribosomal proteins (). The ribosomes and associated molecules are also known as the ''translational apparatus''. Overview The sequence of DNA that encodes the sequence of the amino acids in a protein is transcribed into a messenger RNA (mRNA) chain. Ribosomes bind to the messenger RNA molecules and use the RNA's sequence of nucleotides to determine the sequence of amino acids needed to generate a protein. Amino acids are selected and carried to the ribosome by transfer RNA (tRNA) molecules, which enter the riboso ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

MRNA Translation
In biology, translation is the process in living cells in which proteins are produced using RNA molecules as templates. The generated protein is a sequence of amino acids. This sequence is determined by the sequence of nucleotides in the RNA. The nucleotides are considered three at a time. Each such triple results in the addition of one specific amino acid to the protein being generated. The matching from nucleotide triple to amino acid is called the genetic code. The translation is performed by a large complex of functional RNA and proteins called ribosomes. The entire process is called gene expression. In translation, messenger RNA (mRNA) is decoded in a ribosome, outside the nucleus, to produce a specific amino acid chain, or polypeptide. The polypeptide later folds into an active protein and performs its functions in the cell. The polypeptide can also start folding during protein synthesis. The ribosome facilitates decoding by inducing the binding of complementary transfer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Translation (biology)
In biology, translation is the process in living Cell (biology), cells in which proteins are produced using RNA molecules as templates. The generated protein is a sequence of amino acids. This sequence is determined by the sequence of nucleotides in the RNA. The nucleotides are considered three at a time. Each such triple results in the addition of one specific amino acid to the protein being generated. The matching from nucleotide triple to amino acid is called the genetic code. The translation is performed by a large complex of functional RNA and proteins called ribosomes. The entire process is called gene expression. In translation, messenger RNA (mRNA) is decoded in a ribosome, outside the nucleus, to produce a specific amino acid chain, or polypeptide. The polypeptide later protein folding, folds into an Activation energy, active protein and performs its functions in the cell. The polypeptide can also start folding during protein synthesis. The ribosome facilitates decoding ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

16S Ribosomal RNA
16S ribosomal RNA (or 16 S rRNA) is the RNA component of the 30S subunit of a prokaryotic ribosome ( SSU rRNA). It binds to the Shine-Dalgarno sequence and provides most of the SSU structure. The genes coding for it are referred to as 16S rRNA genes and are used in reconstructing phylogenies, due to the slow rates of evolution of this region of the gene. Carl Woese and George E. Fox were two of the people who pioneered the use of 16S rRNA in phylogenetics in 1977. Multiple sequences of the 16S rRNA gene can exist within a single bacterium. Terminology The descriptor ''16S'' refers to the size of these ribosomal subunits as reflected indirectly by the speed at which they sediment when samples are centrifuged. Thus ''16S'' means 16 Svedburg units. Functions * Like the large (23S) ribosomal RNA, it has a structural role, acting as a scaffold defining the positions of the ribosomal proteins. * The 3-end contains the anti- Shine-Dalgarno sequence, which binds upstream ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Svedberg
In chemistry, a Svedberg unit or svedberg (symbol S, sometimes Sv) is a non- SI metric unit for sedimentation coefficients. The Svedberg unit offers a measure of a particle's size indirectly based on its sedimentation rate under acceleration (i.e. how fast a particle of given size and shape settles out of suspension). The svedberg is a measure of time, defined as exactly 10−13 seconds (100  fs). For biological macromolecules like ribosomes, the sedimentation rate is typically measured as the rate of travel in a centrifuge tube subjected to high g-force. The svedberg (S) is distinct from the SI unit sievert or the non-SI unit sverdrup, which also use the symbol Sv, and to the SI unit Siemens which uses the symbol S too. Naming The unit is named after the Swedish chemist Theodor Svedberg (1884–1971), winner of the 1926 Nobel Prize in chemistry for his work on disperse systems, colloids and his invention of the ultracentrifuge. Factors The Svedberg coef ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tetracycline
Tetracycline, sold under various brand names, is an antibiotic in the tetracyclines family of medications, used to treat a number of infections, including acne, cholera, brucellosis, plague, malaria, and syphilis. It is available in oral and topical formulations. Common side effects include vomiting, diarrhea, rash, and loss of appetite. Other side effects include poor tooth development if used by children less than eight years of age, kidney problems, and sunburning easily. Use during pregnancy may harm the baby. It works by inhibiting protein synthesis in bacteria. Tetracycline was patented in 1953 and was approved for prescription use in 1954. It is on the World Health Organization's List of Essential Medicines. Tetracycline is available as a generic medication. Tetracycline was originally made from bacteria of the genus ''Streptomyces''. Medical uses Spectrum of activity Tetracyclines have a broad spectrum of antibiotic action. Originally, they possessed some lev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gentamicin
Gentamicin is an aminoglycoside antibiotic used to treat several types of bacterial infections. This may include bone infections, endocarditis, pelvic inflammatory disease, meningitis, pneumonia, urinary tract infections, and sepsis among others. It is not effective for gonorrhea or chlamydia infections. It can be given intravenously, by intramuscular injection, or topically. Topical formulations may be used in burns or for infections of the outside of the eye. It is often only used for two days until bacterial cultures determine what specific antibiotics the infection is sensitive to. The dose required should be monitored by blood testing. Gentamicin can cause inner ear problems and kidney problems. The inner ear problems can include problems with balance and hearing loss. These problems may be permanent. If used during pregnancy, it can cause harm to the developing fetus. However, it appears to be safe for use during breastfeeding. Gentamicin is a type of amin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


F-Met
''N''-Formylmethionine (fMet, HCO-Met, For-Met) is a derivative of the amino acid methionine in which a formyl group has been added to the amino group. It is specifically used for initiation of protein synthesis from bacterial and organellar genes, and may be removed post-translationally. fMet plays a crucial part in the protein synthesis of bacteria, mitochondria and chloroplasts. It is not used in cytosolic protein synthesis of eukaryotes, where eukaryotic nuclear genes are translated. It is also not used by Archaea. In the human body, fMet is recognized by the immune system as foreign material, or as an alarm signal released by damaged cells, and stimulates the body to fight against potential infection. Function in protein synthesis Translation fMet is required for efficient initiation of protein synthesis in most groups of bacteria. The 30S ribosome–mRNA complex specifically recruits tRNAs with a formylated amino acid – tRNAfMet attached to fMet in the na ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Start Codon
The start codon is the first codon of a messenger RNA (mRNA) transcript translated by a ribosome. The start codon always codes for methionine in eukaryotes and archaea and a ''N''-formylmethionine (fMet) in bacteria, mitochondria and plastids. The start codon is often preceded by a 5' untranslated region (5' UTR). In prokaryotes this includes the ribosome binding site. Decoding In all three domains of life, the start codon is decoded by a special "initiation" transfer RNA different from the tRNAs used for elongation. There are important structural differences between an initiating tRNA and an elongating one, with distinguish features serving to satisfy the constraints of the translation system. In bacteria and organelles, an acceptor stem C1:A72 mismatch guide formylation, which directs recruitment by the 30S ribosome into the P site; so-called "3GC" base pairs allow assembly into the 70S ribosome. In eukaryotes and archaea, the T stem prevents the elongation factors from bi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Initiation Factors
In molecular biology, initiation factors are proteins that bind to the small subunit of the ribosome during the initiation of translation, a part of protein biosynthesis. Initiation factors can interact with repressors to slow down or prevent translation. They have the ability to interact with activators to help them start or increase the rate of translation. In bacteria, they are simply called IFs (i.e.., IF1, IF2, & IF3) and in eukaryotes they are known as eIFs (i.e.., eIF1, eIF2, eIF3). Translation initiation is sometimes described as three step process which initiation factors help to carry out. First, the tRNA carrying a methionine amino acid binds to the small subunit of ribosome, then binds to the mRNA, and finally joins together with the large subunit of ribosome. The initiation factors that help with this process each have different roles and structures. Types The initiation factors are divided into three major groups by taxonomic domains. There are some homologies ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inorganic Phosphate
Phosphates are the naturally occurring form of the element phosphorus. In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosphoric acid, phosphoric acid . The phosphate or orthophosphate ion is derived from phosphoric acid by the removal of three protons . Removal of one proton gives the dihydrogen phosphate ion while removal of two protons gives the hydrogen phosphate ion . These names are also used for salts of those anions, such as ammonium dihydrogen phosphate and trisodium phosphate. File:3-phosphoric-acid-3D-balls.png, Phosphoricacid File:2-dihydrogenphosphate-3D-balls.png, Dihydrogenphosphate File:1-hydrogenphosphate-3D-balls.png, Hydrogenphosphate File:0-phosphate-3D-balls.png, Phosphate or orthophosphate In organic chemistry, phosphate or orthophosphate is an organophosphate, an ester of orthophosphoric acid of the form where one or more hydro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]